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With regard to the difficulty which

we have described in connection

with definitions and numbers, what

is the cause of the unification? In all

things which have a plurality of

parts, and which are not a total

aggregate but awhole of some sort

distinct from the parts, there is

some cause; inasmuch as even in

bodies sometimes contact is the

cause of their unity, and sometimes

viscosity or some other such quality.

But a definition is one account, not

by connection, like the Iliad, but

because it is a definition of one

thing.

Aristotle,Metaphysics, VIII, 1045a

The whole is more, than the sum of

its parts.

Popular paraphrasing of the above.
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Preface

I am rather unsure when and where I decided I would pursue a doctorate in physics,

and even less so, when and where I decided to pursue anything at all in physics.

Most of my relatives that I personally know are medical doctors, so although in the

end I evaded the nudge to continue the family tradition and took up physics (I kind

of struck a deal at home to take an extra maturity exam in biology, to keep all av-

enues open), my choosing of the Eötvös Loránd University was highly motivated by

its biophysics specialization and its many possibilities for interdisciplinary studies.

Somuch so that I took up biology for some time, which turned out to be interesting,

but the courses and I did not have the same thing in mind, so we parted ways.

Earlyon Idecided todelve into research–undoubtedly the influenceofmy father,

scientist and businessman –, which was when I stumbled upon the works of Tamás

Vicsek, professor at the Department of Biological Physics. Professor Vicsek agreed

to bemy supervisor for a student project, marking the starting point of the long and

arduous process of him teachingme theways of a scientist, culminating almost nine

years later in this dissertation. It was he who showed me, that our everyday envi-

ronment, visible without sophisticated machinery, still holds plenty of excitement

for a physicist and that trying to tackle biological problems with the armament of a

physicist is more than fascinating. And thus was born the broader topic of my PhD.

Out of all the things I havehada chance todabble in Professor Vicsek’s group, the

collective motion of animals was what caught my attention the most, as half of this

dissertation attests to. In the last two years, I’ve been an assistant research fellow in

another great group at the Eötvös Loránd University, working with Professor Ádám

Miklósi at the Department of Ethology on the observation of actual animals and not

just the theoretical modelling of them. I hope that in the near future I may be able

to combine these two efforts, and put somemore hard data behindmymodels.

I wish tomention somepeople, withoutwhomthis dissertation could never have

vi
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been finished. First of all, of course Tamás Vicsek, for guiding me all these years,

even though I didn’t always listen. I thank the co-authors of the papers comprising

thebulk of the presentwork, KatalinOzogány, EnysMones andViktorMüller, and the

people at the Department of Biological Physics for helping me out in various ways.

A heartfelt thank you goes to ÁdámMiklósi and the Department of Ethology for pro-

viding an opportunity to keep working on my PhD these last two years. Also to the

friends and fellow PhD students who were a tremendous help in finishing and pol-

ishing. And of course the biggest thank you goes to my family, who had my back all

these years.



1
Introduction

The most successful stories of science in the 20th century were all reductionist in

essence, both in physics and in biology. The discovery of the atom, then the nuclei,

the particles of the Standard Model or the advent of the genetic code andmolecular

biology were all trying to take apart systems into smaller and smaller parts. But at

the end of the century, a new, more holistic science started to gain popularity: that

of complex systems. An underlying assumption of complexity sciences is that com-

plexity has universal rules independent of the actual system, and thus one does not

study the constituents of the complex system, rather, the emergent phenomena that

exist only at the level of the system. Of course, even if one subscribes to Kuhn’s view

of the scientific progress, predecessors of the science of complexity can be found

in statistical physics, systems theory and some other disciplines. As it is with many

fields of science, the rise of computing power facilitated the paradigm change. As

wewill see later, complexity science is hard, since the eponymous systems are, well,

complex, with many constituent parts and many interactions between them which

very quickly make pen-and-paper approaches severely limited. Complexity science

1



CHAPTER 1. INTRODUCTION 2

ismore a collection ofmethods to tackle suchproblems rather than the study of spe-

cific systems. Its principles of looking for system-wide properties that emerge from

the interactionsof the constituentsmake it applicable inmany fields, with this inher-

ent interdisciplinarity making it rather successful, and also very popular. Popularity

also has its drawbacks, however. Compared to, say, quantum mechanics and spe-

cial relativity, the jargon of complexity science is quite accessible, leading to debates

about the scientific status of research running under the nameof complexity science

in areas not traditionally close to hard science.

When writing this dissertation, I had two goals in mind. First and obviously, I

had to show how I have contributed to science while I was in doctoral school and

secondly, that mayhap it will be of some use for a student wishing for orientation

in the subjects of complex systems and agent-based modelling. In Chapter 2 I will

present an overview of complex systems in general and try to showwhy they are in-

teresting. Then I will cover aspects of the modelling of complex systems with the

focus on the agent-based modelling method, with both practical and philosophical

issues inmind. In Chapters 3 and 4 two papers will be covered in which agent-based

modelling is employed, andaremyaforementionedcontributionsand requirements

for the doctoral degree. In both cases, I will try to emphasise the rationale behind

choices in the agent-based methodology to further my second goal. Since the two

fields (epidemiology of HIV on sexual networks and collective motion of hierarchi-

cal herds) are quite far apart, both chapters will cover the necessary background to

appreciate the choices in modelling the systems. Common characteristic of both

systems are that they are rather specific and the models try to closely follow this,

passing some ”reality tests” and that they both have distinct types of agents, which

of course, complicatematters. I hope that these twoexampleswill beable todemon-

strate how general the methods of complex systemmodelling are, being able to ad-

dress very different question in very different systems.



2
Methodology

2.1 Complex systems

The definition of what a complex system and complexity science exactly are is not

very straightforward, as there are several definitions circulating in the literature [1].

A common idea to mention about complex systems is the paraphrased quotation

from Aristotle’s Metaphysics: ”The whole is more, than the sum of its parts.” Al-

though the out-of-context quotation’s implications are slightly misleading (see the

epigraph), it does captureageneral picture: a complex systemcannotbeunderstood

via study of its components; it has to be studied as a whole, with the interactions of

the componentsplayingan important role in creating somethingentirely new. Along

these lines some authors emphasize self-organisation and emergent behaviour as

the hallmarks of complexity [2].

Péter Érdi offers amore detailed definition by contrasting a complex systemwith

a simple system [3]. He defines simple systems as having (some or all) of the follow-

ing properties:

3



CHAPTER 2. METHODOLOGY 4

• single cause and single effect,

• small change in cause implies small change in effect,

• predictability,

and, in a contrast, complex systems as having (some or all) these:

• circular causality, feedback loops, logical paradoxes (self-referential para-

doxes) and strange loops (self-similarity),

• small change in cause implies dramatic change in effect,

• emergence and unpredictability.

Another important aspect of complexity, is that complex systems are very often -

although far from always - hierarchical. The physical internet is made up of individ-

ual computers and routers on one level, but autonomous systems (this is a technical

term, they are officially numbered) act on another level; a large herd may consist of

smaller groups; a human body is made of organs, which in turn are made of cells; a

university is made up of faculties, which aremade up of departments, etc. In a com-

plex system it might not be trivial to determine the relevant constituents as all tiers

of the hierarchy may be equally important.

As we can see, Érdi’s definition is ambiguous and has some elements of chaos

theory in it. The ambiguity of the definition of complexity is not helped by the fact,

that there are some concepts of complexity that are incongruent with the above

idea. For example, computational complexity deals with how difficult a computa-

tional problem is for a computer to solve it, in terms of required resources. The Kol-

mogorov complexity (or as also called, algorithmic information content) is themea-

sure of complexity of strings, defined by the length of the shortest algorithm that

outputs the given string. Following this definition one would find the random string

to be the most complex entity, which is clearly not what we had in mind [4].

The student of complexity may also be hampered when trying to find his or her

wayaround in complexity scienceby ”complexity” sometimesbeingusedmetaphor-

ically in the social sciences, with jargon referenced, but, from a natural sciences per-

spective, in a questionably scientific manner [5], [6]. Actually, there is special issue

of an otherwise business oriented journal [7], which is rather reminiscent of the at-

tempted peace-treaty of the ”Science Wars”, the book ”One Culture?” [8].

Before moving on, it is worth noting that the complex/(non-complex) simple di-

chotomy is not the same as the complicated/(not-complicated) simple dichotomy.
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Indeed, a (non-complex) simple system could be complicated and a complex system

could be not-complicated. For example, a mechanical watch is quite complicated,

but its very essence is to be predictable. On the other hand, non-complicated in-

teraction rules between very non-complicated constituents can lead to non-trivial

emergentbehaviour as is the casewith the simple collectivemotionof self-propelled

particles (see Section 4.1).

Whenone starts to list examplesof complex systemsmostwill come frombiology

or fromsomespecific part of human life. Wikipedia, for one, lists the following exam-

ples: ”Examples of complex systems are Earth’s global climate, organisms, the human

brain, social and economic organizations (like cities), an ecosystem, a living cell, and

ultimately the entire universe.”, another online search hit gives four examples from

society (markets, organisations, language, internet), six from biology (cells, organs,

immune system, organisms, populations, ecosystems), and only four from physics

(turbulence, weather, percolation, sandpile). No wonder, that many physicists turn

to the study of systems derived from biology, or society. Of course, perhaps greater

public interest and the feeling of a need to better understand ourselves and our im-

mediate environment is also a drive (I would argue that amodern human’smost im-

mediate environment is definitely other modern humans).

But why are there so many complex systems out there? One of the things that

make complex systems so interesting from a scientific point of view, is that it seems

that self-organization intocomplex systems is something likea lawofnature, thatoc-

curs everywhere, and that these complex systems seem to follow very similar laws

in their behaviour despite sometimes having very different constituents. Although

no definite answer can be given, we do have some hints. The biosphere is one of the

largest andmost complex complex system that we know about. The state-of-the-art

scientific consensus is that from the start of life on Earth, the process of biological

evolution has pushed this system to increasingly greater complexity, starting from

single-celled life forms to the present variety of multi-celled complex life forms, of

which at least one (humanity), is capable of creating even more complexity as a re-

sult of its technological and social evolution (let us not dwell on the question of how

exactly unique is Homo sapiens in the animal kingdom in this regard). A very recent

article [9] provides some theoretical backgroundonhowevolution couldbe thermo-

dynamically driven. In short, the authors show that a many-particle system under

a dissipative external drive (as the biosphere is driven by the radiation of the Sun)

evolves along the trajectory in its phase space that maximises dissipation (and thus
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absorption) of energy. If the system consists of self-replicators (the energy absorp-

tion is tied intoapositive feedback loop), thiswill lead to theproliferationof themost

adapted self-replicator, in a manner strikingly similar to that outlined in Darwinian

theory of evolution.

The methods of modelling (and simulating) complex systems have a lot in com-

mon, even when the systems in question markedly differ. In the following section,

I will overview some general features of complex system modelling and in the later

chapters investigate how they can be applied to two different research questions

about two different systems: a network of human sexual contacts and a hierarchical

system of self-propelled particles. Both consist of many agents of different types in

non-trivial interactions that change over time, leading to complex dynamics.

2.2 Modelling of complex systems

The advent of the computer age has given a tremendous boost to the modelling of

complex systems. A model of a complex system - typically differential equations in

the pen-and-paper era - generally does not have an analytical solution, unless sig-

nificant approximations (e.g mean field) are made. Although having an analytical

solution toaproblemmakesone feel easier aboutourunderstanding the topic, com-

puter simulation ofmodels has become an invaluable tool, since given enough com-

puting power, we can now simulate arbitrary complex systems using a computer.

Obviously, the ”lawof conservationof difficulty” - a frequently-heardphrasedur-

ing my undergraduate studies, that turned out to be true more times than I would

havewished for - holds here aswell. A complete analytical solutionwill cover the en-

tireparameter spaceof theproblemwithaprecision that is limitedonlyby the theory

and the precision of input parameters. Although checking the validity of an analyti-

calmodel is also plaguedbyphilosophical issues, using numerical simulations to ac-

quire solutions ofmodels introduces evenmore problems [10]. Numerical solutions

are prone to errors from discretization, numerical instabilities and possible errors

introduced by pseudo-random number generators. Benchmarking against partial

analytical solutions may yield some piece of mind, but, in general, there is no sure

way to guarantee veracity. Also, during simulation of our model we are forced into

a subset of the parameter space, as limited by the available computational power,

making complete exploration of a model technically impossible.

In fact, the topic of the epistemological issues related to science’s quest for truth
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is rather bleak and, if read about toomuch, can cause a young researcher to despair.

Yet, as the colloquial saying goes: it works [...]! Nevertheless, the fact that the basis

of hard sciences do work is quite surprising and not at all self-evident: the ability

to formulate mathematical models of phenomena that can then be used to predict

new phenomena is both baffling, and one of our greatest blessings as scientists (I

would refer the reader to Wigner’s famous lecture on this ”unreasonable effective-

ness” [11]).

Aside from essentially creating models to be simulated in computers, another

common property of complex systems models is that they are stochastic in nature.

This is not only convenient (since quite often unknownor complicated processes are

lumped into some noise acting on the system), but this has a profound connection

to statistical physics, where temperature (thermal noise) is the most important pa-

rameter of any system.

In the following section I will overview agent-based modelling, a type of mod-

elling paradigm often used in complex system modelling, and will touch upon how

some of the aforementionedmodelling issues are mitigated.

2.2.1 Agent-basedmodelling

In general, there are two ways one can go about modelling a complex system,

the more traditional dynamical approach or the somewhat newer agent-based ap-

proach. The first approach considers the system evolving along some trajectory in

its phase space. One constructs differential equations describing this evolution (typ-

ically a master equation), which is then numerically integrated. An obvious perk

of such an approach is that although analytical solutions are not possible, one can

explore the system with approximate analytical solutions, aiding greatly the under-

standingandbench-markingof thenumerical solutions. A caveat is thatmicroscopic

information is not available, since one does not track all individual elements of the

system during simulation.

Contrasting the dynamical approach is agent-basedmodelling. In this paradigm

each constituent element of the system and each interaction between these ele-

ments is simulated individually. This approach has two main advantages: first, mi-

croscopic information is tracked during the entire simulation, and second, when

the system to be modelled presents clear candidates for agents and their interac-

tion, it is very straightforward to conceptualize themodel. Biological and social sys-

tems clearly benefit from the latter: it is very easy to see a cell, an animal or an or-
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ganisation as an agent. Another, more technical advantage, is that an agent-based

model very easily translates to object-oriented computer code, which is quite pop-

ular nowadays, and many popular programming languages are tailored to it. The

drawback of the agent-based approach, compared to the dynamical approach, is

that even approximate analytical solutions are generally not possible to calculate

and the concept of agents and their interactions is somewhat prone to the inflation

ofmodel parameters, bothofwhich canhindermeaningful understandingof the sys-

tem through the simulation results.

In a typical setting, we have data about global phenomena in the systemwewish

to model and candidate entities - whose properties we also have some information

about -whichwecanuseasagents. In creating themodel,webasicallymodel theen-

tity chosen as an agent, whichmay ormay not have several internal parameters and

processes, and we model interaction between agents. Following this, we simulate

ourmodel in silico and check whether it is able to reproduce the global phenomena,

about which we had data.

At this point, we should again consider relevant epistemological questions. What

do we learn, when our model does not reproduce the global phenomena, and what

do we learn when it does? In the former case, we learn that our model, with the

given parameters, is not a good representation of reality, but from a purely theoreti-

cal viewpoint, this is notmuch, given that there are infinite numberofmodels to test.

In the latter case, we learn that our currentmodel, with the current parameters, pro-

duces behaviour similar to the given system we are using as a reference, but purely

theoretically, this does not imply anything about our model’s details corresponding

to reality’s details. So, this all begs the question, ”How does it work?”.

The first issue is, what does itmean if we have amodel that reproduces someob-

served phenomena? Or even a step further back, what do we mean by reproducing

observed phenomena? At one extreme, we have what they do in modern computer

games or CGI movies: for example, the way to model human facial expressions is to

record actual actors and then build the animation around them (even the wording

changes, this is not a simulation, it is an animation). On the other extreme, we have

the joke about the physicist modelling a chicken: let’s take a sphere of a radius of

unity in vacuum. So, one must first decide how much of the details one wants to

model, and then do themodelling. Aswe have said, in principle, this should be easy,

but in practice, it is surprisingly difficult to createmodels that both pass Occam’s Ra-

zor (a frequently used heuristic in science, which roughly says to choose the simpler
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of twomodels, that fit your data, so in other words, try to make simple models) and

work sufficiently well. Thus, we assume, that any model that passes the razor and

works has a high chance of corresponding to reality in a meaningful way. And, of

course we gain another important thing: we have a model, whose internal working

we presumably understand, which does something we want and can be used as a

template to build artificial systems. With agent-based modelling, this means a very

straightforward mapping to some artificial agents, e.g. robots or drones.

The second issue is about problems introduced by the numerical method and

possibly the pseudo-random number generators. In agent-based modelling, in-

stead of solving a few equations, we generally deal with hundreds and thousands

of agents, each solving their own equations and applying interaction rules, etc. This

means that, at any a given time, we have agents in different states interacting with

manyother agents. If the time resolutionof the simulation is fineenough, thismeans

that in practice, simple numerical methods are usually enough to produce a stable

solution since the small numerical errors are washed out, especially when using a

random noise element in the model.

The third issue toaddress is exploring the entireparameter spaceof theproblem,

which is technically impossible without analytical solutions. So, how do we know

whether we have found everything of interest in our model? On one hand, we can’t

know. On the other hand, our agents are based on some constituent part of the sys-

temwe are trying to understand, which limits the parameter space worth exploring.

Further, many times, meaningful behaviour of the system as a whole can provide

guidance about where computational capacity should be focused. Of course, one

must do this carefully, since as we have stated, in general there is no guarantee that

nothing interesting will be missed.

All in all, agent-based modelling is an easily graspable and versatile method for

modelling complex systems, capable of delivering stable solutions.



3
Study 1: Epidemiology of HIV on

complex sexual networks

This chapterwill present our study titled ”HIV competitiondynamicsover sexual net-

works: first comeradvantageconserves founder effects” [12] as anexampleof agent-

based modelling. The study concerns itself with the modelling of different strains

of HIV/AIDS infections competing on a realistic human sexual network. In the next

section wewill overview the background literature needed to understand the differ-

ent aspects of the problem and then present our specific motivation in creating the

model. The rest of the sections of the chapter will present our work on the problem:

the agent-basedmodel we created, the results we obtained, and its discussion.

10
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3.1 Background literature

3.1.1 Complex networks

The study of complex system very often involves the study of complex networks. A

network is essentially a graph, and network theory is essentially graph theory, albeit

sometimes networks are defined to be some subset of graphs. Generally, since the

mathematical literature uses the graph and a good number of applications use the

network terminology, the latter appears more often when graphs are used tomodel

some real-world phenomena.

Erdős-Rényi model and real world networks

When tackling the Königsberg bridge problem Euler studied a small graph, but com-

plex networks cannot be handled in the same way, and have to be treated statisti-

cally, which leads naturally to the study of random graphs. The Hungarian math-

ematicians Alfréd Rényi and the somewhat legendary Pál Erdős proposed the first

random graphmodel in 1959 [13].

In its original formulation, the Erdős-Rényi graph is formed by taking N nodes,

and randomly placing E edges between them. A slightly different formulation is

placing edges between nodes with a probability p instead of fixing their number. It

is clear, that if we choose p, so that

pN(N − 1)/2 = E (3.1)

in the thermodynamic limit ofN → ∞, the two formulations are statistically equiv-

alent. In the first formulation, the number of edges are known exactly, in the second

formulations the existence of edges are independent of one-another, making each

formulation good in different scenarios. The Erdős-Rényi model was a very impor-

tant step, but has shortcomings when trying to model real world phenomena. To

understand this, first wewill introduce someproperties of networks. Although there

are many more, three properties will be of interest to us: the degree distribution,

clustering coefficient and the average shortest path length.

Thedegree of a node is the number of edges attached to it, thus the degreedistri-

bution of a network carries information on how the edges are distributed among the

nodes. The clustering coefficient ci of the node i is defined as the ratio between the

number of edges ei among its nearest neighbours and its maximum possible value
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ki(ki − 1)/2, that is

ci = 2ei/ki(ki − 1). (3.2)

Then the clustering coefficient of the network is given by 〈ci〉. It gives an indication

of how embedded nodes are in a network. The third property we mention is the

average shortest path length 〈lij〉 in the network, which is a measure of how easy it

is to go from one node to the other. The name very much implies the definition: the

shortest path length is the minimum number of edges traversed while going from

one node to the other.

The degree distribution of the Erdős-Rényi model in the thermodynamic limit is

easy to calculate when we take the definition with the probability p. On average the

graph will have

〈E〉 = 1

2
N(N − 1)p (3.3)

edges, and since each edge contributes to the degree of two nodes, the average de-

gree is

〈k〉 = 2〈E〉
N

= (N − 1)p ≈ Np. (3.4)

If 〈k〉 < 1 then the networkwill be a bunch of small disconnected components, thus

usually only the 〈k〉 > 1 regime is investigated.

To arrive at theP (k)degree distributionwenotice, that the probability of a node

with degree k is equal to the probability that it is connected to k nodes and not con-

nected to the otherN − 1 − k nodes, leading us to the binomial distribution in the

form of

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k, (3.5)

which in the thermodynamic limit with pN = 〈k〉 can be approximated with the

Poisson distribution

P (k) = e−〈k〉 〈k〉k

k!
. (3.6)

The clustering coefficient also yield easily from the independent connection proba-

bility, since for a given node the probability that two of its neighbours are also con-
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nected is given by the probability p, thus giving

〈c〉 = p =
〈k〉
N

. (3.7)

The scaling of the average shortest path length 〈l〉 can be approximatedwith the

followingargument. Thenumberofneighbourswithinadistanceofdof agivennode

can be approximated with 〈k〉d. Since this grows exponentially fast when 〈k〉 > 1,

if we choose d to be 〈l〉 we should have approximately all the nodes within this dis-

tance, thus 〈k〉d ≈ N , leading us to

〈l〉 ∝ logN

log 〈k〉
. (3.8)

Network N 〈k〉 〈l〉 〈l〉rand 〈c〉 〈c〉rand

WWW, site level, undir. 153127 35.21 3.1 3.35 0.1078 0.00023

Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001

Movie actors 225226 61 3.65 2.99 0.79 0.00027

LANL co-authorship 52909 9.7 5.9 4.79 0.43 1.8×10-4

MEDLINE co-authorship 1520251 18.1 4.6 4.91 0.066 1.1×10-5

SPIRES co-authorship 56627 173 4.0 2.12 0.726 0.003

NCSTRL co-authorship 11994 3.59 9.7 7.34 0.496 3×10-4

Math. co-authorship 70975 3.9 9.5 8.2 0.59 5.4×10-5

Neurosci. co-authorship 209293 11.5 6 5.01 0.76 5.5×10-5

E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026

E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06

Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03

Words, co-occurrence 460902 70.13 2.67 3.03 0.437 0.0001

Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006

Power grid 4941 2.67 18.7 12.4 0.08 0.005

C. elegans 282 14 2.65 2.25 0.28 0.05

Table 3.1: Properties of several readworld graphs, adopted from [14], the references

to the original data source can be found there.

Numerous realworldnetworkshavebeenmeasured to calculate the aboveprop-

erties, and although not exclusively, many are very similar regarding these proper-
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ties. First, in these real networks the degree distributions are heavy-tailed distri-

butions, meaning that their tails are not exponentially bounded (i.e. there is finite

chance of finding nodeswith a very large degree). Second, they exhibit the so-called

small-world property, the famous ”six-degrees of separation”. Technically, it means

that the average shortest path length scales with the logarithm of the number of

nodes (〈l〉 ∝ logN ) while the clustering coefficient 〈c〉 is not small [15].

The Erdős-Rényi model fails on two accounts with being a model for such real

world networks. First, its degree distribution has an exponential cut-off, and sec-

ond, its clustering coefficient is very small when using the number of edges and

nodes from real world examples. Table 3.1 lists several networks with their mea-

sured average degree, average shortest path length and clustering coefficient. The

latter two are also calculated if the network were randomized (the same number of

edges placed randomly among the same number of nodes, i.e. as an Erdős-Rényi

graph). It can be clearly seen that the clustering coefficients are much larger, than

what an Erdős-Rényi graph would yield.

TheWatts-Strogatz model for small-world networks

Figure 3.1: Rewiring in the Watts-Strogatz model. Each node is connected to its four

nearest neighbours. As p is increasedmore andmore edges are rewired. At p = 1 all
edges have been rewired. Figure from [16].

To solve the issue of the low clustering coefficientWatts and Strogatz introduced

themodel named after them, which has a tunable clustering coefficient. Themodel

starts withN nodes in a ring (see Figure 3.1), which are connected to them nearest

neighbours on both sides. Then for each node each edge connected to a counter-
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Figure 3.2: The plot shows that as p is increased from 0 to 1 there is a regime where

the clustering 〈c〉 is still largewhile theaverage shortest path length 〈l〉drops rapidly.
In this regime theWatts-Strogatzmodelhas small-worldproperties. Figure from[17].

clockwise (right side) neighbour is rewiredwith a probability p to a randomly chosen

other node. It should be noted that even at p = 1 the graph will not be totally ran-

dom, since half the edges are not rewired even in that case. The degree distribution

of the Watts-Strogatz model can be obtained analytically [17] yielding

P (k) =

min k−m,m∑
n=0

(
m

n

)
(1− p)npm−n (pm)k−m−n

(k −m− n)!
e−pm, for k ≥ m. (3.9)

As we can see, this is still has an exponential cut-off, so the degree distribution

is very similar to that of the Erdős-Rényi, but the clustering coefficient and the av-

erage shortest path length behaves very differently. When p is zero, the graph has

a very large clustering coefficient, but a small average shortest path length. A small

increase in p will not effect the clustering, since only a few edges are rewired, but

they introduce significant shortcuts within the graph. If we observe Figure 3.2 we

will see that there is a large regime of p, where the clustering coefficient is essen-

tially the same as with p = 0 yet the mean shortest path length is greatly reduced,

which regime ismore in line with observations of real world networks, although this

model still lacks a heavy-tailed degree distribution.
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The Barabási-Albert model

Themost famous andubiquitous heavy-taileddegreedistribution is theP (k) ∝ k−y

power law distribution, describing the so-called scale-free graphs. The name de-

rives from the homogeneous property of such a degree distribution, that isP (λk) =

λ−γP (k), which means that any rescaling of the degrees will only offset the distri-

bution by a constant factor. A notable feature of the power-law distribution is that

on the [1,∞[ interval, it only has awell definedmean if the exponent γ is bigger than

two, and a well defined variance if γ > 3. If one tries to do the actual calculation it

should be noted thatwhen talking about power-lawdegree distribution it is custom-

ary to use the continuous k approach, i.e. to treat the degree as a continuous vari-

able and also, that in the continuous approach onemust introduce a kmin minimum

degree for the integrals to converge. The exponent of many real world networks fall

between 2 and 3, although in reality, a network is called scale-free if the power law

holds for 3 orders ofmagnitude, since there is always an upper boundary: either the

system size (no node can have more edges thanN − 1) or some other physical lim-

itation. Thus any reference to a real world network’s power-law exponents must be

understood to hold between some kmin and kmax values.

If scale-free networks are so common in very different scenarios, we start look-

ing for some universal property that explains it. László Barabási and Réka Albert

proposed a mechanism, which can yield power-law networks through preferential

attachment of links to nodes that already have many links. The model starts with

m0 nodes and no edges. Then for each step we

1. add a new node, withm < m0 edges

2. connect the other end of them edges to already present nodes with a proba-

bility ki/
∑

j kj

i.e. the probability of connecting a new edge to an old node is proportional to its

degree. Using the continuous k approximation we can show that this mechanism

leads to the degree distribution P (k) ∝ k−3. The derivation goes like this. The

probability that thenode iacquiresanewedge isproportional to it degreeasdefined

by the model

P (ki(t)) =
ki(t)∑
j kj(t)

. (3.10)
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The growth of the degree is governed by the equation

dki(t)

dt
= mP (ki(t)) (3.11)

with the condition that ki(i) = m as each node is introduced withm edges. Since

at each step we add 2m to the total number of degrees Equation 3.11 will take the

following form:
dki(t)

dt
=

mki(t)

2mt
, (3.12)

which yields

ki(t) = m

(
t

i

)1/2

. (3.13)

The degree distribution is

P (k, t) =
1

t+m0

∫ t

0

δ(k − ki(t))di = − 1

t+m0

(
dki(t)

di

)−1
∣∣∣∣∣
i=i(k,t)

, (3.14)

where δ is the Dirac delta function andN = t+m0. This gives

P (k, t) = 2m2 t

t+m0
k−3 −−−→

t→∞
2m2k−3. (3.15)

The average shortest path and the clustering coefficient can also be calculated with

some approximations, giving short paths but a low clustering coefficient as the sys-

tem size increases [15]:

〈l〉 ∝ logN

log logN
, (3.16)

〈c〉 = m

8N
(lnN2) (3.17)

Generalized random graphs

Although it is good to know that preferential attachment leads to a scale-free be-

haviour, for modelling purposes we need a tool that can produce power law degree

distribution with arbitrary exponents. The method of generalized random graphs is

amethod to create a graph with a degree distribution of our choice for a given num-

ber of nodes. Given N nodes and a P (k) distribution we generate a ki sequence

ofN numbers from P (k) and assign these as the desired ki degrees of each node.

For each degree of a node, the node receives a half-edge, then these half-edges are
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paired up randomly. Obviously if
∑

i ki is odd this cannot be done so care must be

taken to only generate sequences with an even sum, although in practice, ifN and

the number of edges are large enough, we can safely discard the last orphan half-

edge in an odd case.

We now have a tool to generate networks with power-law degree distributions

of given exponents, but is the small-world property present? It can be shown, that

the average shortest path lengths scale with the logarithm of the graph size, which

is good, but the clustering coefficient goes to zero asN increases, which is less so.

Fortunately the situation is not as bad as in case of the Erdős-Rényi graph. The clus-

tering coefficient is very similar to the Erdős-Rényi 〈c〉 = 〈k〉/N , but has another

factor

〈c〉 = 〈k〉
N

[
〈k2〉 − 〈k〉

〈k〉2

]
, (3.18)

which can be rather large for the graph sizes of observed networks. For instance,

Newman showed that just the power law degree distribution accounts for much of

the clustering of the World Wide Web [18].

3.1.2 Epidemiology

SI, SIS and SIRmodels with full mixing

Epidemiology concerns itself among other things, with question about the spread-

ingof diseases in givenpopulations. Classical epidemiologicalmodelling starts from

the assumption of ”full mixing”, whichmeans that all individuals have equal chance

of coming into contact with an infected individual (i.e. mean field approach, or in

case of networks the Erdős-Rényimodel). This assumption allows for easily solvable

differential equation, but can be dropped to use actual contact networks, to intro-

duce more realistic models. Based on the full mixing assumption, there are three

simple models of infection spreading, named after the allowed states of individuals

in themodel. There are three such states: susceptible (S), infected (I) and recovered

(R), which are also called compartments, since each individual of the population can

be assigned to one of these compartments. A susceptible individualmay be infected

by an infected individual, becoming an infected individual, while an infected indi-

vidual may recover from infection and become recovered (R) and immune to further

infection. The most basic model is the SI, where only S→ I can happen (e.g HIV). In

the SIS model, an infected individual may become susceptible again (e.g. flu) and

in the SIRmodel an infected individual may become recovered (e.g. mumps). In the
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following let us investigate thepropertiesof thesemodelsbasedonChapter 9of [13].

Let us denote the ratio of susceptible, infected and recovered individuals in the

population with s, i and r. Based on the full mixing assumption each individual is in

contact with 〈k〉 other individuals. Assuming that in a given dt time an infected in-

dividual will infect a susceptible individual with a probability β, then in the βdt � 1

limit the probability for a susceptible individual to get infected isβ〈k〉idt. Given that
the influx of individuals into to infected compartment is proportional to the num-

ber of susceptible individuals and s(t) = 1 − i(t) in the SI model, we can write the

following differential equation to describe the SI dynamics:

di(t)

dt
= β〈k〉i(t)[1− i(t)]. (3.19)

As can be readily seen from the equation, the SI model leads eventually to all indi-

viduals being infected, leaving only the speed of the spreading at question.

The SISmodel has a bitmore variation to it, since in this case an already infected

individualmaybecomehealthyandsusceptibleagain. Assumingan infected individ-

ual becomes susceptible again with the probability µdt, we canmodify the previous

equation like thus:

di(t)

dt
= −µi(t) + β〈k〉i(t)[1− i(t)]. (3.20)

TheSIRmodel complicates thiswitha third state. In this case theµdt still denotes

the probability of leaving the susceptible state, but now to the recovered andnot the

susceptible state, further complicating the equations:

ds(t)

dt
= −β〈k〉i(t)[1− r(t)− i(t)], (3.21)

di(t)

dt
= −µi(t) + β〈k〉i(t)[1− r(t)− i(t)], (3.22)

dr(t)

dt
= µi(t). (3.23)

Note, that both the SIS and the SIRmodel behave the samewhen taking the lim-

its of the µ/beta ratio. By taking the limit of µ � β infected individuals heal faster

than they can infect other individuals, leading to the epidemic dying out quickly. In

contrast, taking the µ � β limit all terms containing µ are negligible leading effec-

tively to the SI model. Next we will explore the behaviour of these models.
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The initial condition of an epidemic is a small fraction of infected individuals, i.e.

i � 1 so we need only keep the terms that are first order in i

di(t)

dt
= β〈k〉i(t) (3.24)

leading to the solution

i(t) ' i0e
β〈k〉t, (3.25)

for small t-s, where i0 is the initial ratio of infected individuals. The solution defines

the τ = (β〈k〉)−1 timescale of the spreading of the epidemic. For the SIS and the SIR

models taking the terms that are first-order in i leads to the same equation in both

cases:
di(t)

dt
= −µi(t) + β〈k〉i(t). (3.26)

Similarly as with 3.24 this leads to an exponential solution,

i(t) ' i0e
t/τ , (3.27)

albeit with a different timescale:

τ−1 = β〈k〉 − µ. (3.28)

The main difference here is that τ in the SIS and SIR models may be negative,

leading to the withering of the epidemic. This allows for the definition of the so-

called epidemic threshold as such:

τ−1 = µ(R0 − 1) > 0, (3.29)

whereR0 = β〈k〉/µ is the basic reproductive rate, which has to be larger than 1 for

an epidemic to occur.

Infection spreading in graphs

The above equations can be modified to take into account heterogeneity in the un-

derlying contact network. This can become very important whenmodelling real-life

networks and as we will later see, human sexual networks are very heterogeneous.

Previouslywe took theaveragenumberof contacts andassumedeach individual has

that many contacts. Let us relax this assumption and allow each individual to inter-
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act with as many individuals as s/he has contact with. To do this we will introduce

thequantities sk, ik and rk as the ratioof individualswhoare susceptible, infectedor

recovered respectively, among the individuals with k number of contacts. Assuming

the only difference between individuals is their number of contacts and introduc-

ingΘk, the density of infected individual in the neighbourhood of individuals with k

contacts, we arrive at the following SI equation:

dik(t)

dt
= β[1− ik(t)]kΘk(t). (3.30)

The SIS and SIR models can likewise be adapted. Without detailing calculations, in

this case the timescale previously defined changes to the following:

τ =
〈k〉

β〈k2〉 − (µ+ β)〈k〉
, (3.31)

and setting the condition for the spreading of the epidemic (the epidemic threshold)

to

β

µ
≤ 〈k〉

〈k2〉 − 〈k〉
. (3.32)

Note, that in case of 〈k2〉/〈k〉 → ∞, the epidemic threshold is zero,meaning any

kind of infection will spread eventually. As we will see later, human sexual contact

networks are modelled with networks where this is the case in the thermodynamic

limit.

3.1.3 Introduction to HIV and AIDS

History of HIV

The acronym AIDS stands for Acquired Immune Deficiency Syndrome and is a very

recent addition to the various diseases plaguing humanity, which attacks the im-

munesystem, and if leftuntreated, leads todeath throughsecondary infectionwhich

wouldnotbeable toattackahealthy individual. First diagnosed in thewesternworld

in 1981 in the United States of America, initially it was regarded as a disease only

affecting homosexuals, since it first started amongst homosexual men. Later it was

diagnosed in intravenous drug users and an infant died to due AIDS, rapidly leading

to larger awareness. After it also spread to Europe international efforts began to stop

it. In 1983 the cause of AIDS was found: Human Immunodeficiency Virus (HIV).
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The origin of HIV can be traced back to Central Africa. Monkeys and apes in Africa

have been infected with the Simian Immunodeficiency Virus (SIV) for at least 30mil-

lennia before the start of theHIV pandemic, possibly passing over to humans several

times, but these strains of HIV presumable died out. There are several types of HIV,

but the global pandemic of infections is being driven mainly by the group M lineage

of HIV-1, which crossed the species barrier from chimpanzees to humans about 100

years ago, most possible in Léopoldville (today Kinshasa, Democratic Republic of

Congo) [19], [20]. By the time it started to spread beyond its epicentre in Central

Africa, the virus had already accumulated considerable sequence diversity [20], and

distinct divergent clades initiated a series of rapid expansions that gave rise to the

subtypes of HIV-1 group M [21], [22].

There are several theories on why over the last 30000 years HIV could only start

a pandemic in the 20th century, but they all share a common theme of tying it to

the colonization of Africa: rapidly growing cities, destabilized social structures and

widespread infectionsof sexually transmitteddiseases. One theory is that theorgan-

ised medical fight against the sexually transmitted diseases was the direct cause of

the spreading of HIV. At that time Léopoldville had 2-4 times asmanymen aswomen

residents and a considerable part of thewomenwere involved in so-called soft pros-

titutionwith severalmen, leading to a high level of syphilis. The countermeasures to

syphilis was the regular vaccination of the population with needles of questionable

sterility due to poor economic conditions, spreading HIV very quickly.

On Figures 3.3 and 3.4 we can observe 20 years of the pandemic from 1990 to

2010, showing that although it is still a major issue, the number of new infections

and the number of deaths related to HIV is on the decline, thanks to prevention and

treatment efforts, but as we shall see later, our results suggest that the future may

hold some unpleasant surprises.

Infection and disease

HIV can be transmitted via blood, semen, vaginal secretions and breast milk and at-

tacks a type of immune cell called the CD4+ T lymphocytes. It seems that most in-

fections are started by a single virion. In the initial phase of the infection, the acute

phase, HIV starts to rapidly multiply and mutate (the latter being one of the major

causes that we still do not have a vaccine). During the acute phase the virus concen-

tration is extremely high, while the virulence is also high and the diseasedmay suffer

from various symptoms.
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Figure 3.3: The global prevalence of HIV from 1990 to 2010. Figure taken from [23].

Figure 3.4: The yearly number of new HIV infection and deaths related to HIV. Both

the number of new infections and deaths are on a decline. Figure taken from [23].

The acute phase lasts a few months then passes into the chronic phase. In the

chronic phase there are no symptoms, the virulence is low, and this may last for

years. At the end of the chronic phase the number of T cells drops to such a low

level, that AIDS develops. AIDS itself usually does not cause death in itself, but the

lack of a normal immune system makes diseases deadly, that a healthy individual

would not even notice [24].
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3.1.4 Motivation

The global molecular diversity of the pandemic still bears the clear footprint of the

strong foundereffects that characterized this initial expansion. Whilediversity is very

high near the epicentre of the epidemic in Central Africa, the epidemics of other re-

gions are typically characterized by the dominance of at most a few subtypes or cir-

culating recombinant forms (CRFs) [25], see Figure 3.5. The countries where more

than one subtype is prevalent tend to be characterized by parallel, compartmental-

ized epidemics with distinct subtypes infecting different risk or ethnic groups [26]–

[29], and transmission chains rarely cross national borders [30]. While the global

spatial distribution of HIV subtypes is not completely static, the diversification of the

epidemic and shiftsbetween subtypesoccur very slowly inmost regions [25]. Under-

standing the factors that set the time scale of HIV competition dynamics at the pop-

ulation level has great practical relevance. Subtypes differ in both transmissibility

[31]–[33] and the rate of disease progression [34], [35], and further variation in these

traits is bound to exist within the subtypes and in the vast diversity of unique recom-

binant forms (URFs) and unclassified basal lineages in Central Africa [36]–[38]. Virus

variants that have higher transmission potential are likely to be spreading at the ex-

pense of less efficient strains, and epidemics may expand as the original variants

are gradually replaced by ”fitter” viral lineages. The risk and pace of these processes

needs tobebetter characterized. Wedevelopeda simplemodel of sexually transmit-

ted HIV epidemics that allowed us to monitor the competition dynamics of distinct

virus strains with varying rates of transmission. In sexually transmitted epidemics,

HIV is transmitted over the network of sexual contacts, which tends to include a very

limited subset of all possible contacts, i.e. the host population is very far from ”free

mixing”. Our aim was to create an agent-based model of the sexual dynamics of a

population and model the spreading of the virus over the emerging network. Since

in Sub-Saharan Africa the primary way of infection is via heterosexual contact, we

based the model on data from generalized heterosexual epidemics in Africa.

3.2 Ourmodel

3.2.1 Basic model

The basis of the agent-basedmodel is the network of sexual contacts, which consists

of three types of nodes (individuals): males, (non sex worker) females and female
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Figure 3.5: WorldwideprevalenceofHIV-1 groupMsubtypes andCRF.Note, that usu-

ally very few subtypes are in one area, except for Africa. Figure taken from [39].

sex workers (FSW) and the links represent sexual contact. The model tracks the age

andHIV status (stage of infection and the infecting virus type) of each individual, and

for males and (non-FSW) females also a fixed quantifier of promiscuity (a preferred

annual contact degree), and the number of distinct sexual partners in the last year

(realized annual contact degree). Individuals enter the population at age 15 and are

removed at the age of 50, to simulate dropping out of sexual activity. The preferred

contact degree of each individual is drawn from an empirical distribution accord-

ing to the type of the node and is kept constant for the lifetime of the individual.

The promiscuity of males and (non-FSW) females are characterized by continuous

power-law distributions of the form P (x) ∝ x−γ (with different exponents for the

two sexes, see Table 3.2) parametrizedbasedonempirical data and censoredat both

a lower cut-off (one contact per year to ensure all nodes are active in the network)

and an upper cut-off (this is a case where the upper limit given by the network size

is unrealistic once it reaches a few thousand, since there is a physical limit for the

human body). FSW have a fixed maximum number of one-time contacts per week,

representing the businesslike organisation of their sex-life.

The simulations have a time step of one week, and each step consists of the fol-

lowing procedures:

(a) generation of sexual acts along the links and virus transmission,

(b) update of HIV status,

(c) birth and death dynamics of individuals,

(d) dissolution and formation of network links.
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As the simplest assumption, the number of sexual acts in male-female links is

drawn from a Poisson distribution (discarding zeros: no links were inactive); male-

FSW links always involve a single sexual act. The probability of virus transmission to

uninfected individuals is determined by the baseline transmission rate of the virus

strain, amplified if the transmitting individual was in the acute stage of the infection.

Newly infected individuals are immediately assigned a time to death from a uniform

distribution between 3 – 20 years (consistentwith recently estimated survival curves

in cohorts not receiving antiretroviral treatment [40]), and for each infection event

the following are recorded: the date of the event, the strain that was transmitted,

the disease stage of the transmitter, and whether the transmission involved super-

infectionof an individual previously infectedwith theother virus type. For simplicity,

the size of the population is kept constant (at 10,000 individuals of both sexes): all

nodes who die of AIDS or leave the network at age 50 (whichever came first) are re-

placed with a new individual of age 15. The preferred annual contact degree of new

nodes is drawn from the power-law distribution of the respective gender at entry to

the population. The links betweenmales and females are allowed to formandbreak

up at each time step. The baseline probability of break-up is set to yield an average

duration consistent with empirical estimates (see Table 3.2), and is scaled propor-

tional to the average contact degree of the two nodes (such that more promiscuous

individuals have shorter relationships [41]).

Link formation is implemented such that all non-FSW individuals will have a

yearly number of sexual contacts approximately equivalent to their preferred annual

contact degree, using a generalized random graph model. Although a generalized

random graph model would allow for generating an exactly matching distribution,

in our case only an aggregate (yearly) degree distribution was known, so we had to

generate some links at each time step to add up to the preferred yearly contact de-

gree. To do this, at each time step, the nodes are assigned a number of half-links

generated randomly in proportion to their preferred contact degree, which was ap-

proximated by the preferred yearly contact degree divided by the number of weeks

in a year (52). As we will see later, this method slightly increased the realized expo-

nents, partially due to not accounting for links surviving longer than a year.

Becausemales have greater mean promiscuity than non-FSW females, the num-

ber of half-links for males exceed those of the females. New links are formed by

first randomly connecting all female half-links tomale half-links, then randomly dis-

tributing the remaining male half-links to the FSW. All simulation runs of the model
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start with an initialization phase restricted to link formation and break-up until the

sexual network settles to a steady state. FSWs have fixed promiscuity and are added

one by one as long as there is a surplus of male half-links. The number of FSWs at

steady-state is thus not pre-determined, but emerges tomatch and compensate the

imbalance of male and (non-FSW) female links in each scenario.

Population level competition is simulated by implementing two virus types that

are allowed to differ in their rate of transmissibility. The type of the infecting virus

strain(s) is tracked for each infected individual. The first virus strain is introduced

in a random sample of ten percent of all FSW after the initialization of the sexual

network: this method allowed a reliable establishment of the ”resident” epidemic

with negligible risk of extinction. The second (invader) strain is also introduced in a

sample of ten percent of all FSW (sampled from uninfected FSW) when the resident

strain has attained a steady state in the population.

3.2.2 Mechanisms of interference

This simulation framework allowed us to investigate three potential mechanisms of

interference between the resident and the invader strains. To do this, we defined

four scenarios, a default scenario and three other scenarios that differs from the de-

fault one in a specific detail. In the following, we will introduce the default scenario

and then present the supporting and counter arguments, which will also define our

three other scenarios.

In the default scenario, superinfection can occur only by the replacement of the

original strain with the superinfecting strain. In a sexual act between two individu-

als infectedwith different virus strains, both strains have a chance to be transmitted.

Superinfection occurs if two check points are passed: initial transmission occurs ac-

cording to the transmission rate of the infecting strain (modified by disease stage,

if appropriate); then after successful initial transmission, the probability of superin-

fection is determined by the relative transmission rates (”fitness”) of the two strains

as follows: P = ν2/(ν1 + ν2), where ν1 denotes the transmission rate of the virus

infecting the potential recipient and ν2 denotes the transmission rate of the strain

infecting the potential transmitter. This means that at equal transmission rates its a

50-50 game. The ”clock” of disease stage in the recipient is unaffected by superin-

fection in the default scenario; the stage of disease remains to be based on the age

of infection defined by the date of the original first infection of the recipient. A new

time to death is drawn randomly (from the 3 – 20 years range); however, it is used
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only if the new date of death precedes the original date determined at the initial in-

fection: superinfection could never extend the lifespan of an individual. Now that

the default scenario is presented, let us investigate it in detail.

First, infection with one HIV strain may afford some protection against superin-

fection with another strain: both the depletion of target cells and the induction of

anti-HIV immune responses are likely to create less favourable conditions for infec-

tion comparedwith an uninfected individual. Because the strength of such an effect

is still subject to debate (see section 3.4), we used a conservative approach in the

default scenario: if two infected individuals with different strains have a sexual act,

both strains had a chance to be transmitted in a two-step procedure. The first step

tested successful initial transmission, which had a probability based on the trans-

mission rate of the given strain, equivalent to the first infection of an uninfected in-

dividual. Then in the second step the superinfecting virus replaced theoriginal strain

with a probability based on the relative transmission rates of the two strains. Thus in

the default scenario, the first strain had neither advantage nor disadvantage at the

within-host level, and the “inhibition effect” aroseonly fromtheassumption that the

infection of each individual is dominated by a single virus strain, implying replace-

ment rather than coexistence upon superinfection (which is a reasonable simplifi-

cation for the modelling of population level spread; see Section 3.4). The default

scenario model reduces the average probability of superinfection to 50% of that of

initial infection, which is consistent with a recent prospective cohort study that esti-

mated about two-fold lower hazardof superinfection comparedwith initial infection

[42]. However, we also tested a “dual infection” scenario, in which superinfection

was completely unhindered, and both strains were able to co-exist within one indi-

vidual after superinfection occurred. In this scenario, in sexual acts between a dual

infected and an uninfected individual both virus strains had an independent proba-

bility of being transmitted.

Second, we hypothesized that the peak of infectivity that characterizes acute in-

fection [43], [44] may not occur again upon superinfection due to depleted target

cell levels and the presence of anti-HIV immune responses. If this is indeed the case

then the first virus strain to colonize apopulationmay takeadvantageof a rapid early

wave of expansion fuelled by a high relative frequency of efficient acute stage trans-

missions in a largely susceptible population. In contrast, any subsequent “invader”

strain is limited to the lower rates of chronic transmission that characterize mature

epidemics [45], and even successfully superinfected individuals represent a dimin-
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ished resource if acute peak infectivity cannot be repeated. We implemented this

possiblemechanism by keeping track of disease stage independently of the identity

of the infecting strain. If superinfection occurred after the end of acute infection, the

individual was assumed to remain in chronic stage and the onward transmission of

the superinfecting strain occurred according to its baseline (chronic) transmission

rate. When superinfection occurred during the acute stage of the initial infection,

then the superinfecting strain received the benefit of enhanced acute-stage trans-

mission for the remaining time of the acute stage, timed from the initial infection of

the individual. However, some evidence indicates that superinfection can generate

a new temporary peak of viremia (when the virus can be found in the blood and is

thus easily spreading elsewhere) at least in some of the cases [46]. We have there-

fore also tested a scenario where superinfection started a newwindow of enhanced

acute-stage infectivity.

Third, we hypothesized that in the absence of broadly available antiretroviral

treatment (ART), the first HIV epidemics may also have an impact by selectively in-

fecting and killing highly promiscuous individuals who form the “hubs” of the net-

work. Such individuals have been shown to be particularly important for the spread

of sexually transmitted diseases [47], and they are likely to be infected preferentially

due to their larger number of contacts and thus are also more likely to die of AIDS.

To assess the strength of this effect, we also implemented a scenario in which all in-

dividuals who died of AIDS were replaced by an uninfected individual with the same

promiscuity (preferred contact degree) as that of thedeceased individual, whichpre-

served the degree distribution of the contact network irrespective of the epidemics.

The parameters of the sexual network are based on contemporary surveys in

Africa; HIV parameters are also based on available empirical data (Table 3.2). The

high-prevalence setting was implemented by increasing (doubling) the baseline

transmission rate, consistent with the recent finding that variation in prevalence

among Sub-Saharan countries can largely be explained by differences in the rate of

transmission in serodiscordant couples, i.e. in couples where only one member of

the couple is infected [48].
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symbol description value [reference]

Nm Number of men in the population 10000

Nf Number of women in the population 10000

γm Exponent of male degree distribution 2.45a [49]

γf Exponent of female degree distribution 3.45a [49]

Kc Number of clients per FSW per year 400b [50]–[52]

κmin Lower cutoff of annual degree distribution 1

κmax Upper cutoff of annual degree distribution 1000 c

pb Probability of link breakup per week 0.05d [73]

λ Poisson parameter for the number of sex acts per week 2 [53], [54]

ν1 Strain 1 per-contact transmissibility in chronic stage 0.001 or 0.002e [55]

ν2 Strain 2 per-contact transmissibility in chronic stage (1–1.5)ν1

mA Transmission multiplier for acute infection 9 [56]

Tacute Length of acute phase (weeks) 12 [43]

Tage Duration of sexual activity (years) 35 (age 15-50)

THIV Survival with HIV infection (range in years) 3–20 [57], [58]

Tinit Time steps (weeks) without virus 1000

T single Time steps (weeks) with only one virus 6000 or 4000e

Table 3.2: Parameters used for the simulation of the HIV infection model.

a Used to generate preferred annual contact degrees; for the exponents fitted to

realized contact degrees, see Figures 3.6 and 3.7.

b Middle value from 600 given in [50] and 150 calculated from [51], [52].

c Themaximum realized contact degree was lower in all simulations.

d Baseline rate for links between individuals with degree 1.

e Alternative values used to parameterize low- and high-prevalence settings.
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Figure 3.6: Males: (a) Frequency distribution of the annual number of sexual con-

tacts (realized contact degree) of males in uninfected populations (purple dots) and

in populations with high-prevalence epidemics (green squares), based on median

data from1000 simulation runs. Highly promiscuous individualswere selectively de-

pleted in the presence of the virus. (b) Boxplot of the exponents of power-law distri-

butions fitted tomale individuals in batches of 1000 independent runswith no virus,

low and high prevalence epidemics, respectively. Boxes depict interquartile range,

median is indicated by horizontal lines within the boxes, and whiskers extend to the

farthest values that are not more than 1.5 times the box width away from the box.

Medians (and IQR) of the exponents were 2.59 (2.56–2.62), 2.70 (2.67–2.75) and 2.85

(2.81–2.90) in the absenceof the virus andwith lowor highprevalence epidemics, re-

spectively; all pairwise comparisons between the three scenarios were statistically

significant (p < 10−10; Wilcoxon rank sum test). Simulation parameters were set as

in Table 3.2.

3.3 Results

3.3.1 Network properties with single strain infection

Before exploring the competition dynamics of our model we investigated how the

system behaves without a virus, or with a single strain of virus.

First we validated the annual contact degree distribution of the resulting net-

work for both males and females (see Figures 3.6 and 3.7). Power-law exponents

of the realized annual contact degrees (based on the actual numbers of sexual con-

tacts in the last year)were fitted as described in [59], estimating the lower cutoffwith

Kolmogorov-Smirnov statistics, using the implementationof [60]. The realizedexpo-

nent of the annual contact degrees are slightly larger than the empirical, but are still

very close.

One of the hypothesis on designing the basic scenariowas that an individual will
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Figure 3.7: Females: (a) Frequency distribution of the annual number of sexual con-

tacts (realized contact degree) of females in uninfected populations (purple dots)

and in populations with high-prevalence epidemics (green squares), based on me-

dian data from 1000 simulation runs. Highly promiscuous individuals were selec-

tively depleted in the presence of the virus. (b) Boxplot of the exponents of power-

law distributions fitted to female individuals in batches of 1000 independent runs

with no virus, low and high prevalence epidemics, respectively. Boxes depict in-

terquartile range, median is indicated by horizontal lines within the boxes, and

whiskers extend to the farthest values that are notmore than 1.5 times the boxwidth

away from the box. Medians (and IQR) of the exponents were 3.73 (3.86 - 3.97), 3.83

(3.99 - 4.09) and 3.99 (4.19 - 4.32) in the absence of the virus and with low or high

prevalenceepidemics, respectively; all pairwise comparisonsbetween the three sce-

narios were statistically significant (p < 10−10; Wilcoxon rank sum test). Simulation

parameters were set as in Table 3.2.

onlyhaveoneacutephase, even in caseof a superinfection. The importanceof this is

shown on Figure 3.8 A, where the relative contribution of acute stage transmissions

in our simulations is depicted: after little over a decade, 80% of new infections orig-

inate from individuals in the chronic phase, lowering the overall ability to infect and

thus hindering any subsequent infection from spreading.

Another factor that we hypothesised to negatively effect the spreading of any in-

vader strain, is that the resident strain will deplete the highly connected hubs by se-

lectively killing the highly promiscuous individuals. Indeed, in our simulations the

probabilityof infectionwas strongly related to thepromiscuity (preferredcontactde-

gree) of the individuals (Figure 3.8 b). Using collated data from 100 simulation runs,

logistic regression against log transformed contact degree (controlling also for age

andgender) estimatedaneffect sizeof 2.48 (95%CI: 2.46 –2.50; p < 10−10), implying

that the odds of being infected increased by a factor of exp(2.48), i.e., about 12-fold
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Figure 3.8: (a) The relative contribution of acute stage transmissions over the time

course of single-strain epidemics. The proportion of transmissions originating from

acute-stage transmitters decreases from high levels at the beginning of the epi-

demics to a steady-state around 0.15 and 0.13 in the low (purple dots) and high

(green dots) prevalence epidemics, respectively, over a time scale of a few decades.

Proportion datawere calculatedby combining transmission events recorded in 1000

simulation runs, then smoothed by averaging with a sliding window of 100 weeks

length. (b) The ratio of infection among men (purple dots) and (non-FSW) women

(red squares) increasedwith preferred contact degree (number of partners per year;

plotted on logarithmic scale). The plot was created from 1000 independent simula-

tion runs of single-strain epidemics of high prevalence, using logarithmic binning,

right-censored at the top 1% of the male/female population (where rare classes re-

sult in strong stochastic variation). (c) Theprobability of infectionas a functionof the

promiscuity (preferred contact degree) of the individuals: data andmodel fit. Using

collated data from 100 simulation runs (2 million individuals total), we performed

a logistic regression on the probability of infection in individuals using log trans-

formed preferred contact degree, age and gender as explanatory variables. Purple

and red lines show smoothed actual proportions of infected among females and

males, respectively, calculated with a sliding window (moving along all individuals

sorted according to contact degree; each point representing the frequency of infec-

tions among 1000 individuals). Predictions from the logistic regression (plotted as

orange and green lines, using the same sliding window smoothing) provide an ex-

cellent fit to the data. Effect sizes (and 95% CI) for the three factors were estimated

as follows: log10(degree): 2.48 (95% CI: 2.46–2.50), age: 0.0460 per year (95% CI:

0.0457–0.0464), female gender: 0.420 (95% CI: 0.413–0.428); all three effects were

significant at p < 10−10. Simulation parameters were set as in Table 3.2

for every order of magnitude increase in the preferred contact degree (Figure 3.8 c);

the effect was robust also in regressions on individual simulation runs (effect size

range in 100 simulations: 2.26–2.66; p < 10−10 for all simulation runs). As a re-

sult, an established epidemic of the resident virus strain depleted highly connected

nodes of the network preferentially: the power-law exponent of the contact degree

distributions (fitted to the actual number of yearly partners) increased significantly

compared with the pre-epidemic steady state (p < 10−10, Wilcoxon rank sum test;

Figures 3.6 and 3.7), which may also have put any invader strain at a disadvantage.
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3.3.2 Default scenario

We simulated a simple scenario of competition between two strains of the virus. To

assess the maximum potential for a “first comer advantage”, we started the simula-

tions with one of the strains (the founder, or “resident” strain) and let the epidemics

attain steady-stateprevalencebefore introducing the second (“invader”) virus strain.

The transmission rate of the invader strain was equal to or greater than that of the

resident strain, and its chance and pace of growth was assessed in relation to its

transmission advantage over the resident strain.

We hypothesized that the effect on the spread of the invader strain may depend

on the prevalence of the resident strain, and have therefore considered two scenar-

ios,where the steady-stateprevalenceof the resident strainwasaround0.03 and0.2,

respectively. The two scenarios were set by changing the baseline rate of transmis-

sibility (see Table 3.2); all other parameterswere kept constant. Figure 3.9 shows the

time course of multiple simulations for two selected cases where the invader virus

had equal (Figure 3.9 a,c) or 25%greater (Figure 3.9 b,d) transmission rate compared

with the resident strain in the high (Figure 3.9 a-b) or low (Figure 3.9 c-d) prevalence

scenarios. The resident strain attains steady-state prevalence in about 84 and 74

years in the low- and high-prevalence scenario, respectively. With equal transmis-

sion rate, the invader strain shows no appreciable growth in a hundred years in the

high-prevalence scenario (Figure 3.9 a), and grows, but remains in strong minority

over the same time span in the majority of the simulations with the low-prevalence

scenario (Figure 3.9 c). A 25%advantage in the transmission rate allowed the invader

virus to outgrow the resident strain in both scenarios (Figure 3.9 b,d), but it still took

a median of 60 and 104 years until the prevalence of the invader strain reached that

of the resident strain in the low- and high-prevalence setting; due to its higher trans-

missibility, the invader strain was then able to attain higher steady-state prevalence

compared with the initial steady state of the resident strain. Compared with the ini-

tial expansionof the resident strain, the expansionof the invaderwasmuch slower in

all cases. In addition, 66.4 and 68.3 percent of the simulations with equal transmis-

sibility of the invader resulted in the extinction of the invader virus in the low- and

high-prevalence scenarios, respectively; extinction occurred in 2.4 and 1.2% of the

cases when the invader had 25% transmission advantage. In contrast, with our set-

tings the initial introduction of the resident viruswas nearly always (in 998/1000 and

1000/1000 independent simulation runs of the low and high-prevalence settings, re-

spectively) able to establish an epidemic that grew to steady state.
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The timescales seen on Figure 3.9 are quite compatible with the know history of

the HIV/AIDS pandemic. In our model it takes decades for the epidemic to stabilize

in the population and any second strain also needs quite a few decades to become

more prevalent, than the resident strain, which timescales are both congruent with

the current epidemic.
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Figure 3.9: The invader virus had equal (a, c) or 25% greater (b, d) transmission rate

comparedwith the resident strain in thehigh (a, b) or low (c, d) prevalence scenarios.

The resident strain (solid purple line)was introduced in the population atWeek 1000

(to allow the network to attain steady state); the invader strain (dashed green line)

was introduced in the population when the first strain had already reached steady-

state prevalence (at Week 5000 and 7000 for the high- and low-prevalence setting,

respectively). Even with a 25% advantage in the transmission rate, it took the in-

vader strain a median of 60 and 104 years to reach the prevalence of the resident

strain in the low- and high-prevalence scenario, respectively. The lines showmedian

prevalence from simulations where the invader strain did not go extinct (out of 1000

simulation runs); shading indicates the areas between the 5% and 95% quantiles.

Simulation parameters were set as in 3.2.

Our strategy was thus to construct a default simulation scenario using settings

that we deemed most plausible (partially inhibited superinfection, with strain re-

placementwhensuperinfection is successful; one-timeacutepeakof infectiousness;
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and emergent preferential depletion of highly connected individuals), then test the

effect of switching off one mechanism at a time in a series of test scenarios: i) “dual

infection”with possible co-existence of the two strains in the same individual andno

inhibition of superinfection; ii) “multiple acute”with repeated episodes of enhanced

acute-stage infectiousness upon each successful superinfection; and iii) “fixed de-

grees” in which the degree distribution of the contact network was preserved. This

strategy allowed us to assess the relative impact of eachmechanism on the popula-

tion level competition dynamics, and served also as a sensitivity analysis for relax-

ing the assumptions of inhibited superinfection and one-time acute peak infectious-

ness.

3.3.3 Inhibition of superinfection dominates first comer advan-

tage

We tested eight scenarios (default and three test cases, each in both low and high

prevalence settings) with levels of relative transmission advantage for the invader

strain ranging between 0–50%. The invader strain was introduced in the population

when the resident virus had attained steady-state prevalence; all combinations of

scenario and transmission advantage were tested in 1000 simulation runs. We ex-

tracted several statistics to quantify the probability and rate of the expansion of the

invader virus (Figure 3.10).

When the transmission advantage of the invader strain was small, most simula-

tions of the default scenario resulted in the extinction of the invader variant in both

the high (Figure 3.10 a) and the low (Figure 3.10 d) prevalence settings. In contrast,

the first (resident) strain was able to establish a stable epidemic in nearly all (>99%;

dashed gray line) simulation runs when introduced into a fully susceptible popula-

tion, which indicates a strong first comer advantage at the early stages of the spread

of new strains. Preserving the degree distribution of the contact network (“fixed de-

grees”) had negligible effect compared with the default scenario; allowing multiple

peaks of acute-stage infectiousness substantially reduced the probability of extinc-

tion in the high, but not in the low-prevalence setting. Finally, allowing for unhin-

dered superinfection and coexistence (“dual infection”) reduced the probability of

extinction to near zero evenwith no transmission advantage, illustrating that the in-

hibition of superinfection was the major factor in the heightened extinction risk of

the invader strain. Greater relative advantage in the transmission rate reduced the
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Figure 3.10: All quantifiers are plotted against the relative transmission rate advan-

tage of the second (invader) strain, with alternative scenarios to test interference

mechanisms. Rows show results from the high (top row) and low prevalence (bot-

tom row) settings; columnsdepict threedifferent quantifiers; scenarios are codedby

symbols and colour. In the default scenario (purple lines and dots) the invader strain

faced a high risk of extinction (a, d) and experienced very slow growth to 1% abso-

lute prevalence (b, e) and to 50% relative prevalence (c, f) at low values of transmis-

sion rate advantage, compared with the initial growth of the resident virus (dashed

gray lines). The effect was largely abrogated with unhindered superinfection and

co-existence (dual infection scenario; orange lines and diamonds), and, in the high-

prevalence setting, partially mitigated by allowing for repeated “acute stage” peak

infectivity after superinfection (multiple acute scenario; green lines and triangles);

fixing the degree distribution of the contact network (fixed degrees scenario; red

lines and squares) had little effect compared with the default scenario. Increasing

the relative transmission rateadvantageof the invader strainalsodecreased the inhi-

bitioneffects: values comparable to the single-strainbaselinewereobservedaround

25%–50% transmission advantage. Data in b-c and e-f depict medians from 1000

simulation runs (excluding those where the invader virus went extinct). Parameters

are listed in Table 3.2; scenarios are described in detail in the main text. The maxi-

mum length of simulations was 19,000 weeks ( 365 years); empty symbols indicate

where the invader strain did not reach the threshold prevalence by the end of the

simulation in the majority of the cases.

risk of extinction in all scenarios, approaching zero extinction risk at around 25%ad-

vantage.

We defined two more quantifiers based on the time it took the invader strain to

grow to selected threshold levels (in both cases we derived the statistics from the

simulation runswhere the invader strain did not go extinct). The time to one percent

absolute prevalence (infecting one percent of the total population)was selected as a
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low threshold that would allow for the detection of a new strain in a population (Fig-

ure 3.10 b,e). As a baseline comparison, we plotted also the median time until the

resident strain attained one percent prevalence during its initial expansion (median

of 14.4 and 3.3 years for the low and the high prevalence case; dashed gray lines). At

small values of the transmission advantage, growing even to onepercent prevalence

can takea century ormore in thedefault scenario (e.g. amedianof 114and228 years

with a transmission advantage of one percent, in the low and high-prevalence set-

ting, respectively). The inhibition effect was stronger in the high-prevalence setting,

andwasgradually lostwhen the transmissionadvantageof the invader strainwas in-

creased to about 50%. The dominant mechanism of inhibition was again the inhibi-

tion of superinfection: allowing for dual infection abrogatedmost of the effect even

at low values of the transmission advantage. The other two mechanisms of inter-

ference had negligible effect in the low-prevalence scenario (Figure 3.10 e), but had

some partial effect in the high-prevalence scenario (Figure 3.10 b); multiple peaks

of acute infectiousness had a stronger impact than fixed contact degrees also in this

test case.

Finally, we also collected statistics on the time until the turning point when the

invader strain accounted for 50%of the infections in the population (Figure 3.10 c,f).

This time was extremely long (>300 years) when the invader strain had low trans-

mission advantage in the default scenario, and a transmission advantage of 50 per-

cent was needed to bring it down to a median of 27 and 48 years in the low and

high-prevalence setting, respectively (in comparison, the resident strain reached

50% of its steady-state prevalence in a median of 35 and 40 years in the low and

high-prevalence cases; dashed gray lines). Allowing for dual infection again had the

strongest impact at lower transmission advantage, followedby allowing formultiple

peaks of acute-stage infectiousness.

To understand why the impact of repeated acute-stage infectivity depended on

the initial prevalence of the resident strain, we calculated the contribution of super-

infection events and acute-stage transmissions to the spread of the invader strain in

the various scenarios (Figure 3.11). As expected, the contribution of superinfection

was very low (<5%) in the low-prevalence setting, wheremost individualswere unin-

fectedat the introductionof the invader strain; in contrast,manymore transmissions

( 20% initially) involved superinfection of carriers of the resident virus in the high-

prevalence setting (Figure 3.11 a). Because multiple acute peaks of infectiousness

take effect only when superinfection occurs, their impact on the frequency of acute
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transmissions was much stronger in the high-prevalence setting (Figure 3.11 b–c),

and the increased frequency of efficient acute transmissions explains the reduced

risk of extinction and faster growth of the invader strain when multiple acute peaks

of infectivity were allowed in the high-prevalence scenario. In the high-prevalence

setting (Figure 3.11 a), the relative contribution of superinfection decreases faster in

the multiple acute scenario compared with the default scenario: the reason for this

difference is thatmultiple acute peaks of infectiousness can substantially accelerate

the outgrowth of the invader strain in the high-prevalence scenario (see Figure 3.12),

and the decline of the resident strain results in a decreasing probability that the in-

vader (super)infects an individual who carries the resident strain.
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Figure 3.11: The contribution of superinfection events and acute-stage transmis-

sions to the spread of the invader strain. (a) depicts the time course of the propor-

tion of transmissions of the invader strain that involved superinfection of carriers

of the resident virus. Coloured lines show smoothed proportion data for low and

high prevalence epidemics using the default scenario, and the “multiple acute” sce-

nario that allowed for repeated peaks of acute-stage infectiousness upon superin-

fection. In both scenarios, the contribution of superinfection was very low in the

low-prevalence setting (green and orange lines), where most individuals were un-

infected at the introduction of the invader strain; in contrast, many more transmis-

sions involved superinfection in the high-prevalence setting (purple and red lines).

(b) depicts the time course of the proportion of transmissions of the invader strain

that originated from acute-stage transmitters in the four cases (colour coding is the

same in a and b). (c) shows the difference in the proportion of acute-stage trans-

missions between the default and the multiple acute scenario for both prevalence

settings (i.e. the distance between the red and purple, and between the green and

yellow lines of Panel b). Allowing for multiple acute peaks of infectiousness greatly

increased theproportionof acute-stage transmissions in thehigh-prevalence setting

(purple line), but to a much lesser extent in the low-prevalence setting (green line).

In all cases, time courses are plotted from the introduction of the invader strain into

steady-state epidemics of the resident strain. Proportion data were calculated by

combining transmission events recorded in 1000 simulation runs, then smoothed

by averaging with a sliding window of length 100 weeks. Parameters were set as in

Table 3.2; the transmission advantage of the invader strain was 5% in all cases.
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Figure 3.12: The effect ofmultiple acute infections on the competition of HIV strains.

The figure compares the outgrowthof an invader viruswith 5% transmission rate ad-

vantage in the high (top row) and low (bottom row) prevalence settings with default

superinfection dynamics (left: a, c) or with repeated peaks of acute-stage infectious-

ness upon superinfection (right: b, d). The resident strain (solid purple line) was

introduced in the population at Week 1000 (to allow the network to attain steady

state); the invader strain (dashed green line) was introduced in the populationwhen

the first strain had already attained steady-state prevalence (at Week 5000 and 7000

for the high- and low-prevalence setting, respectively). Multiple acute peaks acceler-

ate the outgrowth of the invader strain and the decline of the resident considerably

in the high prevalence scenario (A vs. B), but not in the lowprevalence scenario (c vs.

d), where superinfection is rare. The lines showmedianprevalence fromsimulations

where the invader strain did not go extinct (out of 1000 simulation runs); shading in-

dicates the areas between the 5% and 95% quantiles. Simulation parameters were

set as in Table 3.2; scenarios are described in detail in the main text.

3.3.4 Short head start or fast population turnover reduce first

comer advantage

We next investigated what happens if the invader strain enters the population when

the first strain is still in its growth phase and has not yet reached steady-state preva-

lence. We ran simulations where the invader was introduced when the resident
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strain had attained 5%, 20%or 50%of its plateauprevalence level and compared the

outcome to the previous default setting (Figure 3.13). As expected the first comer

advantage was weaker when the second strain was introduced early in the growth

phase of the first strain. However, the probability of extinction of the invader strain

increased substantially alreadywhen the resident strainwas at only 5%of its plateau

level initially in the low-prevalence setting (3.13 d), or at 20% of plateau level in the

high-prevalence setting (Figure 3.13 a). The time to 50% relative prevalence of the

invader strain was strongly affected when the resident strain was initially at 5% of

its plateau level in the high-prevalence setting (Figure 3.13 c), and at 20% of plateau

level in the low-prevalence setting (Figure 3.13 f). We thus conclude that (depending

on theprevalence setting) someaspects of the first comer advantage are established

relatively early in the initial expansion of the first successful strain.

We also tested the effect of faster population turnover using a residence time

of 20 years (as opposed to the default of 35 years) for uninfected individuals in the

population. This scenario may apply to regions that experience intense population

movements and/or high rates of non-AIDSmortality. Faster population turnover had

little effect on the initial risk of extinction for the invader strain, but could substan-

tially accelerate the rate of its growth in the simulation runs where it did not go ex-

tinct (Figure 3.14). The probability of extinction is influenced by the instantaneous

availability of susceptible individuals, which is not affected by the rate of turnover

(at a fixedpopulation size); however, subsequent growthdependson the continuous

supply of new susceptibles, which increases with the rate of population turnover.

3.3.5 Case study: The expansion of HIV-1 subtype A in Uganda

While themechanismsof interference can slowdown the invasionof newstrains, the

global pandemic is not static and major shifts between HIV lineages have been oc-

curring in selected regions. Thebest-characterizedexample is theexpansionofHIV-1

subtype A at the expense of subtype D in Eastern Africa [25], [61], [62], and we used

the detailed data from Uganda [62] to derive a crude estimate for the transmission

advantage required for the observed expansion. Between 1994 and 2002, the esti-

matedprevalenceof subtypeDdecreased from11.9% to 8.1%, and theprevalenceof

subtype A increased from 2.8% to 3.0% in Uganda; the overall prevalence of HIV de-

clined from 17% to 13% over the same period [62]. The overall decline probably re-

flects changes in riskbehaviourand/orhealth interventions;with stable (17%)preva-

lence, the relative expansion of subtype A would roughly correspond to growing to



CHAPTER 3. STUDY 1: EPIDEMIOLOGY OF HIV ON COMPLEX SEXUAL NETWORKS 42

0 1 5 10 25 50

0

0.4

0.8

5% 20% 50% default baseline

0 1 5 10 25 50

0

100

200

300

0 1 5 10 25 50

0

100

200

300

0 1 5 10 25 50

0

0.4

0.8

strain 2 advantage (%)

0 1 5 10 25 50

0

100

200

300

strain 2 advantage (%)

0 1 5 10 25 50

0

100

200

300

strain 2 advantage (%)

(a) (b) (c)

(d) (e) (f)

h
ig
h
p
re
v
a
le
n
c
e

lo
w

p
re
v
a
le
n
c
e

probability of extinction Years to 1% abs. prevalence Years to 50% rel. prevalence

Figure 3.13: Quantifiers of the “first comer advantage” when the invader virus en-

ters in the growth phase of the resident strain. Plotted are cases (coded by symbols

and colour) where the invaderwas introducedwhen the resident strain had attained

5%, 20% or 50% of its plateau prevalence; in the default case the second virus was

introduced at Week 7000/5000 in the low/high prevalence setting (as in Figure 3.10)

when the resident strain had already reached a stable plateau in its prevalence. All

quantifiers areplottedagainst the relative transmission rateadvantageof the second

(invader) strain. Rows show results from the high (top row) and lowprevalence (bot-

tom row) settings; columns depict three different quantifiers. First comer advantage

is weaker when the invader enters at earlier stages of the growth of the initial strain.

Dashed gray lines in a-b and d-e represent the growth of the resident virus without

competition; with early introduction of the invader strain, 50% relative prevalence

in C and F is attained well below plateau prevalence and therefore cannot be com-

pared to the 50% point of single-virus epidemics as a baseline. Data in b-c and e-f

depict medians from 1000 simulation runs (excluding those where the invader virus

went extinct). Parameters are listed in Table 3.2; competition dynamics followed

the default scenario in all cases. The maximum length of simulations was 19,000

weeks ( 365 years); empty symbols indicate where the invader strain did not reach

the threshold prevalence by the end of the simulation in the majority of the cases.

3.9% (3·17/13) absolute prevalence, over a background prevalence comparable to

that of our high-prevalence setting. Analyzing data fromour high-prevalence default

scenario, we found the closest match with the data when the transmission advan-

tage of the invader strain was set to 25% (Figure 3.9 b), in which case the increase

from 2.8% to 3.9% prevalence took 7.8 years on average (vs. 8 years in the empirical

dataset). The rate of the relative expansion of subtype A observed in Uganda would

thus require about 25% advantage over the resident subtype D strain, in a setting

of stable overall prevalence in our simulations. Decreasing overall prevalence in the
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Figure 3.14: The effect of population turnover on the “first comer advantage”. All

quantifiers areplottedagainst the relative transmission rateadvantageof the second

(invader) strain, for two levels of population turnover: 35 (default, purple dots) or

20 years (red squares) of uninfected (sexually active) lifespan, in the high (top row)

and low (bottom row) prevalence settings. Faster turnover had little effect on the

probability of extinction of the invader strain, but could have a pronounced effect

on its rate of growth at low values of the transmission advantage. Data in b-c and e-f

depict medians from 1000 simulation runs (excluding those where the invader virus

went extinct). Parameters are listed in Table 3.2; superinfection and replacement

dynamics followed the default scenario. The maximum length of simulations was

19,000 weeks ( 365 years); empty symbols indicate where the invader strain did not

reach the threshold prevalence by the end of the simulation in the majority of the

cases.

empirical data indicates a slowing turnover of infections, which requires a greater

transmission advantage for the same tempo of strain replacement. This is roughly

consistent with the independent empirical estimation that the overall (unadjusted)

transmission rate of subtype A was 47% higher than that of subtype D in the same

cohort [32].

3.4 Discussion

Both the probability and the rate of epidemic growthwere strongly reduced for virus

strains introduced into the steady state of a resident epidemic, when the default as-

sumptions of partially inhibited superinfection and one-time acute peak of trans-

missibility were used in our simulations. To outgrow the resident strain over a few
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decades (the time scale of human observations), the invader virus needed 25 per-

cent or greater advantage in its rate of transmissibility over the resident strain. Of

the three potential mechanisms of interference investigated, the direct inhibition of

superinfection had the strongest effect in both prevalence settings, while one-time

acute peak transmissibility had substantial effect only in the high-prevalence set-

ting. Thedepletion of highly connectednodes in the network had little effect inmost

of the cases. In principle, a fourth mechanism of interference could also arise, be-

cause superinfected individuals (having progressedwith their first infection) tend to

have a shorter remaining lifespan, and therefore a shorter window of opportunity to

transmit the superinfecting strain, compared with individuals who are infected for

the first time. However, restarting the clock of disease progression upon superinfec-

tion had very little effect compared with the default scenario in a set of simulations

(not shown); therefore, this mechanism does not seem to play an important role.

The reduction in the rateof growthof the invader strainwasgreaterwhen the res-

ident virus had higher initial prevalence, while the rate of extinction was insensitive

to initial prevalence. The inhibition effect was weaker, but still considerable when

the second strain was introduced while the first strain was still in the early phases of

its growth, or if the (non-AIDS related) turnover of the population was faster.

Our results suggest that HIV competition dynamics is indeed characterized by

a strong “first comer advantage” if the first strain to colonize a local transmission

group expands to near plateau prevalence before further viral strains invade. This

effect slows down the diversification of the epidemics and facilitates the persistence

of founder effects. As far as we are aware, this is the first attempt to generally char-

acterize the competition dynamics of different HIV strains over sexual networks, in-

cluding multiple possible mechanisms of interference. The specific case of compe-

tition betweenHIV-1 andHIV-2 has beenmodelled in a similar framework [63], while

another study looked at the competition ofmultiple evolving virus strains at the epi-

demic level without considering network structure [64]. Finally, Gross et al. [65]

demonstrated that the inhibition of superinfection can preserve founder effects in

the competition of equally transmissible virus strains, but have not considered net-

work structure, alternativemechanisms of interference, or differential transmission.

The impact of the distinctmechanisms of interferencemay bemodulated by fac-

tors thatwere not included in our simplemodel. First, heterogeneitymay exist in the

transmission rates across individuals and over time within the same partnership: in

particular, per-contact transmission risk may decrease from the first exposures to
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subsequent contactswithin a serodiscordant partnership (independent of the effect

of acute infection) [66], [67]. Such an effect can arise if the individuals highly sus-

ceptible to the virus of their partners tend to be rapidly infected, and the couples

that remain serodiscordant become enriched in cases of low transmissibility over

time (as reviewed in [68]). Similar effects are expected also if the partners of in-

fected individuals can develop partially protective immunity to HIV in the exposures

that do not result in transmission [69]–[71]. Irrespective of the mechanism, if time

dependent variation in transmissibility is strain specific, then the invader virus has

the advantage of being engaged in “first contact” with higher probability than the

resident strain, which would decrease the first comer advantage of the latter. Sec-

ond, if superinfection can generate a new “acute” temporary peak in viremia (and

transmissibility) at least in some of the cases [46], then this mechanism of interfer-

ence may also be weaker, which could reduce the first comer advantage (particu-

larly in high-prevalence epidemics, according to our results). On the other hand, a

detailed analysis of transmission risk in serodiscordant couples in Africa [43], and

a recent phylodynamic analysis of a North American epidemic [44] have both esti-

mated about 20-fold higher transmissibility during acute comparedwith chronicHIV

infection. Using a 9-fold consensus estimate [56] wemay thus have underestimated

the interference effect if repeated “acute” peaks of transmissibility do not (or only

rarely) occur after superinfection. Third, the observed partial inhibition of superin-

fection may not take effect until several months from the first infection [42], [72],

e.g., if partially protective immune responses and/or a limiting depletion of target

cells take a longer time to develop [42]. This would allow unhindered superinfection

in the first fewmonths after seroconversion, which would reduce the first comer ad-

vantage, especially if the second strain arrives while the first epidemic is still in its

growth phase. Fourth, there is considerable debate on the strength of the (partial)

protection from superinfection. Several studies have found zero or very low rates of

superinfection [73], [74] (which would implicate strong protection against superin-

fection), while at the other extreme some studies have found rates of superinfection

comparable to those of initial infection [72], [75], [76] (which would indicate little or

no protection). The differences in the estimates may reflect genuine variation be-

tween the study populations, but also differences in study design, inclusion criteria

and sensitivity of detection [46]. Importantly, deep sequencing methods allow the

detection of superinfecting strains that grow only to low levels in the superinfected

individuals (e.g., [75]), andmay often be lost after a transient episode of superinfec-
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tion [77]. Such low-level superinfection is likely to result in onward transmission of

the minority variant with much lower probability compared with the baseline rate

of transmission. In the context of population level spread and competition, superin-

fection is likely to be relevant onlywhen the superinfecting strain grows to dominate

the virus pool of the individual, which we approximated by allowing only strain re-

placement (and no co-existence) in the default scenario of our simulations. Relaxing

this assumption and allowing for unhindered superinfection abrogated most of the

first comer advantage in our results: we therefore conclude that the strong founder

effects observed in the global phylogeography of HIV are more parsimoniously ex-

plained if superinfection is partially inhibited and the transmission ofmore than one

strain from the same individual is rare.

Our genericmodelling framework could not aim to account for all the (oftenpop-

ulation specific) complexities of human population dynamics and behaviour. For

simplicity, population size was kept constant in our simulations, including instanta-

neous replacement of individuals who died of AIDS. With this implementation pop-

ulation turnover increased with HIV prevalence, e.g., the rate of death/replacement

was about a third higher in the high-prevalence steady state compared with an un-

infected population. Given that faster turnover reduces the first comer advantage,

our results can be regarded as a conservative (under) estimation of the inhibition

effect. Not replacing individuals who die of AIDS results in decreasing population

size, whichmay further inhibit the expansion of invader strains by reducing the sup-

ply of susceptible individuals. In contrast, fast population growth or immigration

may dilute the inhibition effect by increasing the influx of susceptible individuals.

Migration may also play a role by introducing the same invading HIV strain repeat-

edly from a source population: this would eventually overcome the barrier of initial

extinction, but would likely have little impact on the subsequent growth of the in-

vader strain. Furthermore, an established HIV epidemic may also affect sexual be-

haviour: if high-risk sexual practices and/or promiscuity decrease in response to an

ongoing epidemic, the spread of subsequent invader strains may be further inhib-

ited. Finally, the complexities of the sexual network, e.g., assortative mating may

further influence the strength of the inhibition effects.

Alternative or additional mechanisms may also contribute to the preservation

of founder effects. If viral adaptation occurs to host traits that vary between hu-

manpopulations, then a locally adapted virus strainwill enjoy a selection advantage

against strains adapted to other host populations (as has been observed in some
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model systems of host-parasite interactions [78], [79]). For example, the distribution

of Human Leukocyte Antigen (HLA) alleles may differ between human populations,

and local transmission may fix escape mutations against the locally frequent alle-

les that initially had a protective effect [80], particularly in populations with lower

HLA diversity [81]; although this seems to be occurring slowly and to a limited ex-

tentwhereHLAdiversity is high [82]–[84]. Locationorpopulation specificdifferences

may exist in other host traits affectingHIV acquisition or transmission (e.g., in restric-

tion factors [85], [86] or in other components of innate immunity [87]). Each locally

adapted virus strain may therefore have a competitive advantage within its estab-

lished host population, and a disadvantage in other populations—which would also

slowdown the globalmixing of variants or could even result in the long term survival

of several virus strains in different populations. We note, however, that long-term

co-existence of several virus strains in the same epidemic (connected transmission

group) is possible only if specific conditions are fulfilled, e.g., strain-specific immu-

nity or therapy creates frequency-dependent selection that favours the rare type.

Without such specific conditions, the strain with the highest transmission potential

in a given host population drives all other strains extinct in the long run: this princi-

ple of competitive exclusion holds true from simple abstract mathematical models

[88], [89] to complex simulations, including ours.

We parameterized our model based on data from generalized heterosexual epi-

demics in Africa, but it could easily be adapted to other routes of transmission and

to concentrated epidemics. Furthermore, the results of our simulations can be ap-

plied not only to the competition of two distinct lineages (e.g., subtypes, or distinct

clades of the same subtype [90]), but also to competitionbetween virus variants that

arise by localmutations. The general take-homemessageof ourwork posits that the

expansion of the HIV pandemic to all susceptible populations across the world has

made the conditions far less favourable for the spread of “novel” virus strains, irre-

spective of their origin.

Our results have important implications for understanding the past and for pre-

dicting the future of the HIV pandemic. The observed first comer advantage can de-

lay evolution to “optimal virulence” [64], [91] that maximizes transmissibility, and

canalsodelay the spreadof drug resistance (byonward transmission [92]) in the face

of increasing selection pressure from the broadening scope of ART. Widely available

ART may affect resident and invader strains equally, effectively reducing the base-

line rate of transmissions and transforming a high-prevalence setting towards lower
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prevalence. Given thatmost aspects of the first comer advantagewere strong inboth

low- and high-prevalence settings in our simulations, the broadening scope of ART

may not affect this phenomenon strongly.

Because the mechanisms of first comer advantage do not operate at the front

wave of an epidemic expanding into a susceptible population, we suggest thatmuch

of the (non-local) adaptation of HIV may have happened along these front waves,

rather than in populations where prevalence has stabilized. Furthermore, consider-

ing that the currently dominant subtypes probably all expanded riding the wave of

their first comer advantage, most or all of them may in fact possess suboptimal fit-

ness and transmissibility. If the original founder strains of the early expansionswere

selected (at least partly) by “chance”, rather than due to high fitness, then even sub-

sequent evolutionmay have constrained the subtypes to the local suboptima of the

fitness landscape that were accessible from the initial sequence. This implies that

the initial founder effects and the first comer advantage may have provided some

benefit by preventing the fast global spread of the most transmissible HIV variants

in the growth phase of the pandemic. However, the results also caution that the next

stage of the pandemic may be characterized by a shift towards more transmissible

strains over the slow time scales predicted by our model, and data from several re-

gions indicate that this process has already started. HIV-1 subtype A is spreading at

the expense of subtype D in Eastern Africa [25], [61], [62], and HIV-1 is expanding at

the expense of HIV-2 in Western Africa [63], [93]. Our results suggest that these rela-

tively fast replacements require a large selective advantage of the expanding strain.

Indeed, subtype A is associated with higher transmissibility [32] and slower disease

progression [34], [35] compared with subtype D, and HIV-2 has two orders of mag-

nitude lower replicative capacity [94] and more than 3-fold lower per contact trans-

missibility [95] compared with HIV-1. In comparison, within individual patients the

replicative fitness (a probable correlate of transmissibility) showed only about 10%

variation between the fittest and the average viral genome in a study of untreated

HIV-1 infectedpatients [96]. Our results indicate that variationsof greatermagnitude

are needed to drive the relatively fast replacement dynamics of the few observed

cases.

While differences are expected between the currently characterized subtypes,

and those more efficient at transmission are slowly gaining ground at the expense

of less transmissible subtypes, major innovations and potentially higher transmissi-

bility may be more likely to arise from the complex diversity of HIV in Central Africa
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and from the recombinant forms. CRFs probably emerged against the backdrop of

established epidemics and their growth to detectable levels may indicate consider-

able selection advantage. The rapid growth of several CRFs in recent years [25], [97]

is consistentwith this concept and is therefore cause for concern for the future of the

pandemic.

The interference mechanisms and first comer advantage demonstrated in this

paper may also help explain why so few cross-species transmissions of SIV to hu-

manswere able to establish epidemic HIV lineages, andwhy no newmajor HIV types

or groups have emerged since themiddle of the 20th century [98]. It is possible that

a successful reduction or elimination of the current HIV epidemic in Africa may, by

eliminating the inhibiting competition effects, increase the risk for the emergence of

new HIV lineages from novel cross-species transmissions.

Finally, we note that HIV may represent a rare combination of factors relevant

for the observed first comer advantage: infection lasts and remains active for life;

the inhibition of superinfection does not seem to be (strongly) strain specific [99] (as

opposed to other infections with serotypes that elicit type specific immunity); and

infected individuals remain in the contact network for many years. Taken together,

these factors may imply that the first comer advantage, and its consequence of de-

layed global mixing, may be particularly strong for HIV and weaker for most other

pathogens. For example, a persistent infection controlled by strain specific immu-

nity would correspond approximately to our HIV scenario with no inhibition of su-

perinfection, in which case most of the population level effect was lost in the simu-

lations. Non-persistent infectionswould tip thebalance further in favourof thenovel

strain, because individuals recovered from the initial infection would be susceptible

to the novel strain while ceasing to transmit or be susceptible to the first strain.

In all, our results suggest that the interferencemechanisms of competition, pos-

sibly aided by local adaptation, can slow down the adaptation of HIV at the popula-

tion level, in spite of the huge evolutionary potential of the virus. These effects may

explainwhy strong founder effects still persist several decades after the initial global

expansion of the pandemic, andmay hamper the ongoing adaptation of the virus to

maximize its transmissibility and also slow down the spread of drug resistance.
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3.5 Summary

Outside Africa, the global phylogeography of HIV is characterized by compartmen-

talized local epidemics that are typically dominated by a single subtype, which indi-

cates strong founder effects. We hypothesized that the competition of viral strains

at the epidemic level may involve an advantage of the resident strain that was the

first to colonize a population. Such an effect would slow down the invasion of new

strains and thus also the diversification of the epidemic.

We developed a stochastic agent-based modelling framework to simulate HIV

epidemics over dynamic heterosexual contact networks. We simulated epidemics in

which the second strain was introduced into a population where the first strain had

established a steady-state epidemic, and assessed whether and on what time scale

the second strain was able to spread in the population. Simulations were parame-

terized based on empirical data; we tested scenarios with varying levels of overall

prevalence. The timescales of the framework were found to be congruent with the

current HIV/AIDS epidemic.

The spread of the second strain occurred on amuch slower time scale compared

with the initial expansion of the first strain. With strains of equal transmission effi-

ciency, the second strainwasunable to invadeona time scale relevant for thehistory

of the HIV pandemic. To become dominant over a time scale of decades, the second

strainneededconsiderable (>25%)advantage in transmissionefficiencyover the res-

ident strain. The inhibition effect was weaker if the second strain was introduced

while the first strainwas still in its growth phase. We also tested howpossiblemech-

anisms of interference (inhibition of superinfection, depletion of highly connected

hubs in the network, one-time acute peak of infectiousness) contribute to the inhi-

bition effect.

Our simulations confirmed a strong first comer advantage in the competition dy-

namics of HIV at the population level, whichmay explain the global phylogeography

of the virus andmay influence the future evolution of the pandemic.



4
Study 2: Collective motion of

hierarchical herds

This chapter will present our study titled ”Collective motion of groups of self-

propelledparticles following interactive leaders” [100] as anexampleof agent-based

modelling. The study concerns itself with the modelling of the collective motion of

hierarchical herds, that is herds that aremade up from smaller groups of animals. In

the next section we will overview the background literature needed to understand

the different aspects of the problem and then present our specificmotivation in cre-

ating the model. The rest of the sections of the chapter will present our work on

the problem: the agent-based model we created, the results we obtained, and its

discussion.
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4.1 Background literature

4.1.1 Collective motion

Collectivemotion is the emergence of orderedmotion in a systemmade up of many

autonomous agents. Persistent motion is one of the hallmarks of animal life, yet

recently several physical and chemical systems have been found which have self-

propelled, interacting units. There are many questions we can ask about these sys-

tems. Are the observed phenomena unique to the particular systems, or are there

some more general laws that these systems obey? Are these the same for physical,

chemical and biological systems? How can we reproduce these motions? Can we

build robots that exhibit collective motion or alter the behaviour of existing collec-

tive motion? Answering these questions promises advances in fields from animal

husbandry to exploration. Collective motion is a subset of more general phenom-

ena called collective behaviour, that has implications of the organisation of society,

and as such, is of much interest.

4.1.2 The language of collective motion

The fundamental element of a collectivemotion system is the self-propelled particle

(SPP) [101]. This is a point-like particle, that can change its velocity at will and has

some internal energy reserve that allows for itsmovement. Since the SPP is a readily

identifiable agent it is very straightforward to apply agent-basedmodelling to such a

system and is indeed themore successful method, although there are works that go

for continuous media approaches [102]. When modelling such systems, instead of

physical forces different type of effective forces are taken into account, that often do

not even have a force dimension. A systemmade up of such particles obviously will

not conserve energy,momentumor angularmomentum. Although an SPPmodel it-

self violates verybasic physical laws, the systems theyaremodellingdonot. Within a

certain range of accelerations themodel can be thought of as abstracting away from

aunit’s internal energy resources that it canuse topropel itself and abstracting away

fromaunit transferringmomentumandangularmomentum to its environment dur-

ing movement. Such as it is, most models do not take into account that very abrupt

changes are simply not permitted by physical limitations even with the internal en-

ergy and the surrounding environment taken into account, but this is thought of as

loosing a bit of realism for greatly simplified models. Although details of the actual
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environment is usually dropped, it is brought back through the introduction of some

”thermal” noise acting on the particles.

Although SPP models are inherently non-equilibrium, they show some marked

parallels with equilibrium statistical physics. In statistical physics the renormaliza-

tion group method has shown that when a system undergoes a continuous phase

transition, the particular details of the system in question become irrelevant and

only a few relevant parameters remain. A system will have an order parameter,

which measures the transition from one phase to the other and changes continu-

ously, while the relevant parameters obey scaling laws at the point of transition. The

values of the critical exponentswithwhich these parameters scale allow for the clas-

sification of the different systems into universality classes. Remarkably, a very simi-

lar thing happens in SPP systems and both the order parameter and the scaling can

be defined, implying that phase transitions in very different SPP systems should be

very similar, as in equilibrium statistical physics [103].

4.1.3 Evidence

Collective motion has been observed from physical systems through cells to hu-

mans, but to quantitatively analyse and back up models with data each unit has to

be tracked in space. This is a non-trivial task, since usually one must observe many

units (up to the thousands in say starling flocks), which move rather fast in an open

space and look very similar, although for example in bacteria, the space is confined

and the observables slow, but on the other hand they are rather tiny.

Several techniques have been developed to record collective movement each

suited for different scenarios. For cells, the particle image velocimetry method has

beenadapted (themethodoriginally uses tracer particles added toa continuousme-

dia to track the velocity vector field of that media, based on the displacement of the

particles). Bacteria have been tracked by using phase contrast microscopy to visu-

alize them.

For larger animals, the unconfined space poses problems. For two dimensional

movements, e.g. grazing herds aerial photography, or more recently flying drone

based cameras were used to record the animal trajectories. In case of fish, which

naturally move in three dimensions it is possible to build an aquarium that essen-

tially forces them tomove in two dimensions, making video tracking relatively easy.

For three dimensional movement a single camera becomes rather problematic due

to overlaps of individuals and in general the missing distance information. Fish are
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more easily confined compared to birds, allowing for methods not viably for the lat-

ter. An early method for reconstructing the three dimensional movement of schools

of fish was the shadow method, which used a grided background and the shadows

of the fish on this background to determine positions of all the individuals. Later

three orthogonally mounted video cameras were used to capture the trajectories of

a school of fish.

For birds, such techniques are not possible, sincemost birds fly overmuch larger

areas than is feasible to confine. To measure nearest neighbour distances in star-

lings stereoimaging techniques were used, although this did not make it possible

to recover individual trajectories. The newest method, made possible by advances

in the miniaturization of GPS and other animal-borne sensor technologies: each in-

dividual in a flock is supplied with a GPS receiver, which logs trajectories, although

there are two shortcomings, first, the errors of the GPS signals are still quite large

compared to bird-to-bird distances, especially in the vertical direction and that the

time and resources needed to monitor a flock grows almost linearly with the size of

the flock [103].

4.1.4 Simple two dimensional model of collective motion

The first quantitative treatise of collective motion was the Standard Vicsek Model

(SVM), which first presented an SPP model described as a system would be in sta-

tistical physics [101]. The SVM describes a very simple system, that allows for two

dimensional coherent motion to emerge from an initially disordered state and also

shows phase transitions in two relevant parameters.

The systemconsists ofN particles in a periodically boundedboxof lengthL. The

speed of the particles is constant and the same for all particles. The direction of the

velocity is determined by the average velocity of other particles in their neighbour-

hood of radius r and a random noise. The velocities vi and the positions xi of the

particles are updated simultaneously with the following equation

xi(t+∆t) = xi(t) + vi(t)∆t (4.1)

where the speed of the velocity vi(t+∆t) is denoted by v and its direction is given

by the formula

ϑi(t+∆t) = 〈ϑ(t)〉r +∆ϑ, (4.2)
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where 〈ϑ(t)〉r is the average velocity of the particles within a radius r around the

ith particle and ∆ϑ is a random noise drawn from the uniform distribution on the

interval [−η/2; η/2]. Thus for a given L there are three independent parameters:

η, v and the density ρ = N/L2. The irrelevant parameters, which can be changed

without themodel exhibitingmuch changewere set to fix values of v = 0.03,∆t = 1

and r = 1, and the initial conditionwas the randomuniformdistribution of particles

in space and also the random uniform distribution of ϑi-s.

Figure 4.1: Trajectory segments of the SVMmodel for different values of ρ and η. (a)
initial condition, (b) small ρ and η, (c) large ρ and η, (d) large ρ and small η (figure

from [101]).

The model shows a continuous phase transition in ρ and η. The possible states

are shown on Figure 4.1, where 20 steps of each particle’s trajectory is plotted. We

can see on a) the initial conditions, on b) that with low density and noise the parti-

cles form small groups, on c) that with large noise and density the particles basically

move randomly, finally on d) that with large density and low noise all the particles

go in the same direction.
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The quantity

va =
1

Nv

∣∣∣∣∣∣
∑
j

vj

∣∣∣∣∣∣ (4.3)

serves as the order parameter since it is 0 when all particles are moving randomly,

and is 1 when all particles are moving in the same direction. With this the critical

exponents of the phase transition atL −→ ∞ can be calculated given

va ∼ (ηc(ρ)− η)β and va ∼ (ρ− ρc(η))
δ, (4.4)

whereρc(η)andηc(ρ) is thecriticaldensityandnoise respectively, asβ = 0.45±0.07

and δ = 0.35± 0.06.

As we can see, noise plays an important role in the SPP system, in that it can in-

duce a phase transition from a disordered to an ordered state, in analogy with the

temperature of equilibrium statistical physics. Moreover, in slightly more compli-

cated systems noise can play an evenmore important part, as a certain level of noise

can be a stabilizing factor for some system states. For example in [104] they found

that adding attraction to the SPP model there are various motion patterns a group

of SPP-s can produce, but some of these patterns are only stable when there is some

noise in the system.

4.1.5 Collective motion of tissue cells

The study of Szabó et al. [105] is briefly introduced for two reasons, first, it is an

example of trying to explicitly model an observed system and second, because it

had a direct influence on our study. On Figure 4.2 we can see the observed system

of tissue cells and their velocities. As predicted by the SVM, these cells undergo a

phase transition from disorderedmovement to ordered collectivemovement as the

density of the cells is increased.

Although the SVM predicts the behaviour the SVM’s explicit averaging of the ve-

locities of neighbouring cells would not be realistic, since cells very probably do not

have receptors thatwould be able supply themwith the necessary information to do

the calculation. Instead, the collective motion must arise from the pairwise forces

acting between the cells, thus in this model of cells each agent tries to align itself

with the net forces acting on it.
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Figure 4.2: Phase contrast images showing the typical behaviour of cells for three

different densities. (a) 1.8, (b) 5.3, (c) 14.7 cells/100x100 μm 2 . Observe that as cell

density increases cell motility undergoes collective ordering. The speed of single

cells is higher than that of cells moving in coherent groups. Scale bar: 200 μm. (d)-

(f): Velocity of cells. Scale bar: 50 μm/min. Image and caption from [105].

The movement of the ri cell is described by the overdamped dynamics:

dri(t)

dt
= v0ni(θi(t)) +

N∑
j=1

F (ri, rj), (4.5)

thus each cell is trying to keep a self-propelled velocity (n) of their own, while neigh-

bouring cells exert forces on them. The self-propelled velocity slowly relaxes to the

actual velocity thus:

dθni (t)

dt
=

1

τ
arcsin

([
ni(t)×

vi(t)

|vi(t)|

]
· ez

)
+ ξ, (4.6)

where ξ is a noise term and ez is a unit vector perpendicular to the plane of motion.

The pairwise forces are the most simple linear attractive and repulsive forces

between defined by an equilibrium distance Req. and a maximum interaction dis-
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tanceR0, while changing accordingly to the dij distances between cells:

F (ri, rj) = eij ×


Frep.

dij−Req.

Rtexteq.
dij < Req.,

Fadh.
dij−Req.

R0−Req.
Req. ≤ dij ≤ R0,

0 R0 < dij .

(4.7)

The critical behaviour of this system is very close to the SVMwithβ = 0.44±0.08

and δ = 0.38 ± 0.07 (cf. Equation (4.4)). This model adequately reproduces the

observed behaviour of the cells, and also shows, that the explicit averaging of the

SVM has very similar consequences as the gradual alignment to pairwise attraction

and repulsion forces.

4.1.6 Coordinated stopping

In our previous studywhich is not part of the dissertationwehave studiedhowabias

in thenoise felt by the individual canenable coordinatedstoppingofSPP-smoving in

a semi-2D system [106]. As we will later see, among our plans to continue research

on the topic of this chapter is the stopping and starting of collective movement in

herds, sowewill briefly revisit our resultsonhowthenoisebias canbeused to induce

stopping.

The system is semi-2D in the sense that while it models the landing of birds, the

movement in the horizontal plane is completely independent of verticalmovements

(bar actual landing), thus the landing can easily be interpreted as a stopping of some

2Dmotion.

Themechanism for the vertical motion (and subsequently, the landing) is as fol-

lows. The vertical position of a bird is updated as follows

zi(t+∆t) = zi(t) + v
f sum
z,i

|f sum
z,i |

∆t. (4.8)

where the force f sum
z,i is the sum of the following parts: f a

z,i averaging over neigh-

bouring birds’ vertical velocities, f r
z,i repulsive force representing the empty space

each animal keeps around itself, fh
z,i boundary which keeps the birds at a specified

height and an fn
z,i noise.

The averaging is simply the mean of the vertical velocities over the birds inNi,
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(a) (b)

Figure 4.3: (a) The force fh
z against z. The plot shows the small forceless regime

around h and the fast strengthening of the force outside of that, quickly saturating

to a constant. (b) The plot shows the time evolution of the probability distribution

of fn
z . Equation 4.12 is the explicit formula for generating values of this force. Figure

from [106].
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Figure 4.4: The percentage of landed birds as a function of time. The red curve cor-

responds to the case when coupling between the birds is absent, i.e., f a
z = 0, the

green one corresponds to the coupled case, while the blue curve is the mean field

case, i.e., where the radius ofN is infinity instead ofR. It is clearly seen that in the

presence of coupling, the landing is much sharper viz. the synchronisation among

the birds is much greater. It is also notable that increasing the radius of interaction

to infinity does notmake the landing process relevantly sharper, itmerely decreases

the time needed to make the decision to land. Figure from [106].
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i.e. birds closer than a given distance measured in the horizontal plane.

f a
z,i = 〈vz〉Ni

(4.9)

The repulsive force represents the birds trying to keep a givenminimal distance

f r
z,i =

N∑
j=1

f r
z,ij (4.10)

where

f r
z,ij =


A (d− |zi − zj |) if 0 < |zi − zj | < d

0 otherwise.

 . (4.11)

The noise is given by the following formulas:

fn
z,i(t) = α

1−
√

1 + 4θ + 4θ2 − 8ξz,i(t)θ

2θ
(4.12)

where

θ =
1

2

{
1 + exp

(
− t− ti

τ

)}
. (4.13)

In this each SPP is given a preferred stopping time ti, which slowly biases the noise

acting on them toward landing (see Figure 4.3). The force

fh
z,i = − C

20

[
1 + tanh

{
10

R

(
|zi − h| − ∆h

2

)}]
sign(zi − h), (4.14)

keeps the SPP-s at a given height h. The bias, coupled through the averaging force

is what creates the possibility of the SPP-s to overcome this force, creating the syn-

chronisation effect. On Figure 4.4 we can see the effect of this synchronization, that

is the landings of all the SPP-s happen over a much shorter period of time than it

would without coupling and almost as fast, though later in time than it would for a

mean fieldmodel (all SPP-s interacting with all other SPP-s). It is interesting to note,

that in this model the inner states (ti-s and θ-s), are not observable variables, only

from their influence on actual behaviour allows other SPP-s to infer them.

4.1.7 Connection to network and control theory

Control theory concerns itself with the theory of influencing dynamical systems. If

we imagine the flocking of some autonomous artificial agents (e.g. the more and
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more popular drones), one can see the obvious problem. How to coordinate their

movement? How to tell them to go left or right? Control theory is often expressed on

networks with certain nodes effecting some other nodes and has extensively stud-

ied how the different network topologies influence the behaviours of systems. To

apply such thinking to collective motion, we must induce a network topology, for

which the most straightforward method is that each agent is a node and we draw

edges between them, if the two agents interact. Obviously, this generates a time-

dependent network, complicating matters, but nevertheless allows the harnessing

of network and control theory in collective motion problems [103].

The above approach can be used to prove that consensus can be reached in a

flocking scenario. Specifically if given a connected undirected graph (with an aij

adjacency matrix) representing communication between agents of which each has

a state xi, the algorithm

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)) (4.15)

asymptotically converges to an average consensus, i.e. to x1 = x2 = . . . = xN ,

from any initial condition [107]. This means that as long as the flock can maintain a

connected communication graph, they can reach consensus.

4.1.8 Leadership

In many species, individual recognition is most probably not possible, and collec-

tive motion seemingly arises on an egalitarian basis, since from the collective mo-

tion perspective, they are interchangeable, although even in these cases, leadership

may arise from one or few individuals possessing some information not available

to others. In other species, specifically in mammals, individual recognition is pos-

sible, and complex hierarchies emerge in their group structures. Although a natural

assumption would be to point to the most dominant individual as a leader during

collectivemotion, inmany cases the identity and some inner state is responsible for

leadership roles or leadership may be distributed among the group, with increased

dominance levels giving increased influence during collective motion [103].

In ungulates leadership is often attributed to a single individual, yet a recent

study [108] raises interesting questions about the validity of such a concept, based

on observation of two groups of 12 and 6 Przewalski horses. Using different def-

initions of leadership (moving first, moving in front, or eliciting joining to move-
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ment), no individuals that could be consistently classified as a leader were identi-

fied. Some limitations to that study are that several types of movements were not

measured. In addition movements in the breeding season were also not measured;

this was deemed problematic because in the breeding season the stallions directly

elicit movements of their harems away from other stallions. Also, due to method-

ological reasons, only short periods of the day were observed. It has been shown

in some cases that in the same group different type of leadership hierarchies might

arise in different contexts [109], [110], and there are examples in nature where cer-

tain individuals in animal groups consistently act as leaders, for example in zebras

and dolphins [111], [112]. Thus, although it is not very clear, how leadership works

among these horses, the concept of a single leader can be valid for purposes ofmod-

elling.

It should be noted, that the concept of leadership, as we have just seen, is not

exact. Leadership could mean starting movement, or leading movement, or for ex-

ample leading from the back (although a common example of the alpha male wolf

leading from the back of the pack is in fact not true [113]). Thuswhen reading the lit-

erature about leadership in actual systems attention must be paid to the exact type

of leadership implied.

4.1.9 Motivation

Living in social structures with multiple levels of hierarchy is widespread in the an-

imal kingdom [114], [115]. Examples range across several taxa, beginning with hu-

mans and primates [116], [117], through elephants [118], to whales [119], [120] and

equids [121], [122]. There are numerous examples of subgroups forming around

a single individual. For example groups may emerge around a matriarch from her

descendants, like in african elephants [118], sperm whales [120], and killer whales

[119]. Alternatively a reproductive unit may form around a breeding male with sev-

eral breeding females and their youngas inPrzewalski horses [123] andplains zebras

[122]. These breeding units can sometimes also include non-breedingmales aswell,

like in hamadryas baboons [117] or geladas [124].

Our aimwith the studypresented in this chapterwas toexamine theway inwhich

such a two-level hierarchymay spontaneously emerge in a group andwhat implica-

tions that hierarchy might have for the collective motion of the group. Our motiva-

tion and empirical basis was the collectivemotion of a Przewalski horse herd in light

of group formation within the herd, aided by observations made in [125] at the Hor-
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tobágy National Park in Hungary. Asmentioned before, the Przewalski horse herd is

split into harems, organized around a breedingmale, with several breeding females

and their young offspring. So-called bachelor groups, which consist ofmales that do

not have there own harem are also present [126]. It should be noted, that although

zebra harems form herds in the wild and have a very similar social structure to the

Przewalski horse, the Przewalski herd at Hortobágy is only semi-wild as it lives in

a bounded environment, which may force them into a herd. Although this has not

been studied thoroughly, park officials reported, that the initial population did not

form a herd, which only appeared after the growth of population density.

Both the collective motion of several different species of animals [103], and the

emergence of hierarchy within the social system of the Przewalski horse [125] have

already been modelled. Conversely, the collective motion of animals that are hier-

archically organized into subgroups within a larger group have not been modelled.

Thus, we aimed to construct a model of group formation and collective motion of a

herd composed of sub-groups as a self-propelled particle model in two dimensions,

wherewe identified leaders formingharems, and followersmakingup theseharems.

As we have discussed in subsection 4.1.8 that although attributing leadership to a

single individual might not be applicable in all circumstances, it does have explana-

tory power in a wide range of scenarios. As such it stands to reason that concep-

tualizing the division between leaders and followers dichotomously helps simplify

modelling at aminor cost. Simplifyingmodelling is helpful in the initial understand-

ing of the type of collective movement of hierarchical herds as it abstractifies much

of the ethological complications of a harem.

Herein we consider an earlier SPPmodel of collective cell movement introduced

in Section 4.1.5 [105] and extend it with a two level hierarchy by introducing two dis-

tinct types of particles (i.e. leaders and followers) while simultaneously attempting

to limit the increase in the number of parameters. In contrast with [125] the group

formation is not driven by the environment of the herd, but by interactions dynami-

cally evolving during the collective motion of the individuals. While formulating the

model, we concentrated on mimicking the movements of Przewalski horses. While

this specificity adds some complexity to ourmodel, relative towhat is usual in statis-

tical physics, it is mostly related to nuances inmovement and does not play amajor

factor in group formation, which was our main focus.

Our study could have potential implications for understanding how and why

group formationoccurs innature, howgroup formationaffects the system inwhich it
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is happening and the rules governing collective motion in a two-level system. Infer-

ring the universalities and the particulars of the different kind ofmechanisms, could

potentially be used to artificially control both living and human-made systems, such

as domestically kept horse herds or flocks of drones.

4.2 Ourmodel

Themodel is based on [105] inwhich amodelwas developed to depict the collective

motionof cells. Wemodified thismodel to accommodate two typesof SPP-s (leaders

and followers), asymmetric interactions and group formation rules. While extending

thismodel we aimed atminimizing the number of extra parameters. Comparedwith

the usual SPP models the model of [105] gives smoother results due to intrinsic re-

laxation times. We choose parameters that allow the development of motion that

resembles themovements of a herdmade of harems as close as possible within the

framework of themodel. We provide a graphical overview of themodel in Figure 4.5

and an introduction here.

The movements of the horses in the model are confined to a square area, large

compared to the size of the herd, representing the herding area available to them

(Figure 4.5 boundary). Periodic boundary conditions were not considered, first, be-

cause it is not realistic, and second, because it does not make sense in a co-moving

herd to conceptualize that the front may interact with the rear. Also, we introduce a

tendency for horses that stray too far from the herd to head back while still going in

the general direction of the herd’s (Figure 4.5 a)).

All horsesmay followall otherhorses, but the strengthof the interactiondepends

on the types and orientations of the SPP-s in question. Given, that it is plausible that

leaders must also pay attention to followers, they will follow followers too, but to a

much smaller extent than the other way around. Although the interactions taking

place are based on metric distances, we introduce a directedness, meaning that a

horsewill follow the ones in front of itmore than the ones behind it. Several types of

interaction modes have been suggested in modelling collective motion. Early mod-

els used a simplemetric distance, e.g., interacting with anybody nearer than a given

distance [127]. Later topological distances were introduced, e.g., interacting with a

fixed number of nearest neighbours [128]. Recently it has been proposed that the

most biologically correct interaction ranges should be based on visual perception

[129]. In our case, vision plays little part as equine vision is near 360° [130] and nei-
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ther the distances within the herd nor the density of the herd imply that occlusion

would have amajor effect on interactions. As such, the effect of following the ones in

front, rather than the ones behind is relatedmore to the logic of not turning around

if there are others heading in the same direction as oneself.

Leaders who acquire followers (i.e., a harem), will stay farther away from other

leaders than if they were without followers (Figure 4.5 b) and c)). Harems are es-

tablished based on spatial distance, but followers will gradually belong more and

more to the leader they follow, making it easier for them to stay close, because of

the stronger and slightly longer distance interactions with their leader than with an-

other leader (Figure 4.5 d)).

Our model starts from randomized initial positions and velocities, without fol-

lowers being assigned to any leader, thus all followers find groups and leaders at

the same time. Our model forgoes the introduction of complex social rules by using

only spatial interactions as described above and not taking into consideration that

in reality, a new horse would be introduced to a herd already split into harems. On

the other hand, taking the latter into consideration would not allow for the study of

emergent group formation.

4.2.1 Formal model description

We have NL number of leaders and NF number of followers (the list of parameters

can be found in Table 4.1). The 2-dimensional motion of the horse i ∈ {1,N =

NL +NF} is described by the overdamped dynamics

dri(t)

dt
= v0ini(θi)+

N∑
j=1
j 6=i

F int(rij , ϕij)+F com(r̄−ri, v̄)+F wall(ri,vi)+ξ (4.16)

where t is time, ri is the position of and vi is the velocity of horse i, v
0 is a pre-

ferred speedwhich differs for leaders and followers,ni is a unit vector characterized

by the angle θi, F int is a pairwise interaction with rij = |ri − rj | and ϕij being the

angle between ri − rj and vi, F com is a global force dependant on the position (r̄)

and the velocity (v̄) of the center of mass of the herd, F wall is the force acting at the

boundaries and ξ is a vector whose components are delta-correlated white noise

terms with zero mean.

The direction of the self-propelling velocity ni(t), described by the angle θi(t),

attempts to relax to vi(t) = dri(t)/dtwith a relaxation time τi:
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Figure 4.5: Graphical overviewof themodel depicting a small herd inside the bound-

ary with various parts ofF int,r(ri, rj) andF com shown. Radii are drawn to scale (cf.

Table 4.1 for actual values), and the herd is magnified from within the boundary to

show the forces. Solid arrowsdepict direction of forces, dashed arrowsdepict actual

velocities. The following details are included: a) a horse farther from the center of

mass than the given boundary (large green circle centred on the center of mass) will

move towards the herd but also in the direction the herd is going, b) and c) leaders

without groups can go closer to each other than to a leader with a group, while fol-

lowers can go even closer to a leader, d) the attraction radius of the follower-leader

interactions is generally smaller than that of the leader-leader interactions, but it is

increased when interacting with the leader of the follower’s group.

dθi(t)

dt
=

1

τi
arcsin

[(
ni(t)×

vi(t)

|vi(t)|

)
· ez

]
, (4.17)

where ez is a unit vector orthogonal to the plane of motion, and τi differs for lead-

ers and followers. This relaxation provides smooth transitions of the ni(t) desired

velocities. The value of τ was chosen larger for leaders than followers, implying that

leaders are harder to ”convince” than followers to change directions, but our results

are not sensitive to changes in τ .
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The F int(rij , ϕij) force that carries the direct interaction between the horses

can be split into the product of a spatial part (F int,r(rij)), and a coefficient part

(Fint,ϕ(ϕij), the latter being dependent on the angle of the direction of horse j from

horse i and the direction of the velocity of horse i. The spatial part consists of a pair-

wise, asymmetrical force, the direction of which lies on the line passing through the

center ofmassesof the interactinghorses and themagnitudeofwhich is the function

of the distance rij between the horses [105]. The actual form of the force depends

on the type of horses involved:

F int,r(rij) =



F LL(rij), if i and j are both leaders,

F FL(rij), if i is a follower and j is leader,

F LF(rij), if i is a leader and j is a follower,

F FF(rij), if i and j are both followers.

(4.18)

For all four cases there are two radii defined,RAT which is the range of attraction,

and a smaller radiiREX, which is the range of repulsion, and also a distanceL, which

defines a distance inside RAT but outside of REX, splitting the force into four parts

depending on distance, namely a repulsive, an attractive and two non-interacting

regimes, with different coefficients for all four types of interaction in both the inter-

acting regimes (F AT for the attractive and F EX for the repulsive), thus having 8 radii

with 8 coefficients and 4 distances. On the example of F LF(rij) the equations look

like this (leader-leader and follower-leader interactions are slightly different):

F LF(ri, rj) = eij ×



F EX
LF

rij−REX
LF

REX
LF

, rij < REX
LF ,

0, REX
LF < rij < REX

LF + LLF,

F AT
LF

rij−REX
LF

RAT
LF−REX

LF−LLF
, REX

LF + LLF ≤ rij ≤ RAT
LF ,

0, RAT
LF < rij ,

(4.19)

where eij = (ri − rj)/rij . The non-interacting part betweenR
EX andRAT was cho-

sen to be very small its only function being is to remove some ”vibrations” that arise

at such low densities, when a horse is on the edge of the attractive and repulsive

regimes. The form of the force is one of the simplest ways to define gradually grow-

ing forces based on distances and the values of the specific parameters were chosen

to imitate that leaders with harems wish to protect their followers from other lead-
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ers, while bachelor leaders themselves can create groups.

In the cases of leader-leader (F LL) and follower-leader (F FL) interaction this pic-

ture is slightly changed due to the formation of groups. Followers will develop a

certain amount of affinity to leaders who are close by, that increases in strength

when they are close to the leader and decreases when they are farther away from

the leader. Each follower keeps track of time spent near each leader with the quan-

titiesDij ∈ [0,∞], which follow the simple dynamics

dDij

dt
=


+1, rij ≤ RAT

LF ,

−1, rij > RAT
LF andDij > 0,

0, rij > RAT
LF andDij ≤ 0.

(4.20)

This is then translated into an affinity

Aij = 2A

 1

1 + exp
(

−Dij

τA

) − 0.5

+ 1, (4.21)

where τA is the characteristic time of affinity increase andA is a constant. The form

of Equation (4.21)was chosen so thatAij goes smoothly from 1 → A+1 asDij goes

from 0 → ∞. This effectively changes the parameters in Equation (4.19) (but not in

Equation (4.20)!) for the F FL case from F AT
FL → AijF

AT
FL and from RAT

LF → AijR
AT
LF .

This allows a follower to split farther from the leader it belongs to, without leaving

the harem, thus introducing more consistency into the group compositions.

The definition of groups is based on the valuesDij . Every follower is considered

to be in the group of the leader for which the value ofDij is largest for the given fol-

lower. The leader–leader interactiondiffers inoneaspect if eitherof theparticipating

leaders have a group, by effectively increasing the repulsive radiusREX
LL of both lead-

ers fivefold when interacting with each other. As such two leaders can be close to

each other only if they don’t each have their own groups. This is reminiscent of the

distinction between bachelor groups, where males are close together and harems,

where the males are farther apart.

The velocity dependent part is the same for both leaders and followers:

Fint,ϕ(ϕij) =
−1

1 + exp(−4(ϕij − π
2 ))

+ 1, (4.22)

which effectively means, that a horse will pay more attention to horses that are in
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front of it, rather than those that are behind it. The formwas chosen because of the

saturation properties. The total interaction is thus

F int(rij , ϕij) = Fint,ϕ(ϕij)F int,r(rij). (4.23)

The force F com keeps the herd roughly together, since if one strays farther than

Rcom from the center of mass of the herd it will experience the force

F com(r̄ − ri, v̄) = Fcom

|ri − r̄| −Rcom

Rcom

(
r̄ − ri
|r̄ − ri|

+ β
v̄

|v̄|

)
, (4.24)

where β is parameter that tunes how much the horse is guided in the direction the

center of mass is heading and Fcom is the overall strength of the force. Since Rcom

is relatively large this force is usually inactive, but will smoothly guide a lost horse

back into the herd (adopted from [131], see Figure 4.6).

Figure 4.6: Snapshot of the force F com with β = 0.75 and the velocity of the center

of mass of the flock pointing along Y axis. The force guides any stray members of

the flock smoothly back with the forces growing proportionally away and back from

the center of mass. Figure from [131].
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The force F wall sets the boundary conditions. The herd is confined to a square

area defined by the lengthD. This box is impenetrable and horses cannot leave it.

For the herd to approach this hard boundary in a realistic way, there is a character-

istic distanceRwall where the forceF wall is turned on:

F wall(ri,vi) =
Fwall

2

(
sin

[
π

(
Rwall − diw

Rwall

− 1

2

)]
+ 1

)vi · nw

vi · tw

 , (4.25)

where diw is the distance of the horse from the boundary, nw is the normal vector

of the boundary and tw is the tangent vector of the boundary, driving the horses

smoothly along the wall (adopted from [132] and [133]).

Initially both leaders and followers are evenly distributed over a square with a

linear size of 500, with velocities also randomly distributed.

4.2.2 Parameters

Going, in a naïve way, from the one-type-particle model of [105] to the two-type-

particle model would increase the number of required parameters from 14 to 30

(someparameters aredoubledand someare increased fourfold givenevery possible

combination of the particles). By considering that some of these are unnecessary to

duplicate (or make four of) our model has 23 parameters. Of these only 7 are rele-

vant in the sense that the formation of meaningful groups is sensitive to their value

(parameters that would destroy cohesion even in a one-type-particle model were

not taken into account), not considering the size of the herd. A parameter was con-

sidered relevant if an increase by twofold or a decrease by half resulted in 0.1% of

followers not being in a group on average (this is less than one per a realization of

the model). For a complete list of parameters see Table 4.1. Parameters were cho-

sen so that cohesive movement occurs and that group formation happens. Except

for cases where there was a reason to do otherwise, parameters that could be differ-

ent for leaders and follower were kept the same. The distances were chosen based

on observations, the coefficients of the various forces were chosen so that the phe-

nomenologyof themovements resembles thatof a real herd. The leaders are slightly

faster than followers so that they are able to stay in front of their harem. It must be

noted, that in many cases, leaders in real-life examples may not be at the front of

their group, but rather at the side or behind; we elected to use the leading-from-
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front paradigm for the purpose of simplicity. Other choices pertaining to parameter

value selection have beenmentioned in the previous section describing the model.

4.3 Results

Our model, with the given parameters, produces a cohesive and ordered motion

of the entire herd, while forming groups around leaders and also bachelor groups

from group-less leaders. This is in qualitative agreement with the actual observed

herd moving on an open plane and as an interesting extra phenomenon, our model

also includes “fights” between leaders for followers. By “fights” wemean a situation

where two or more leaders without groups get extremely close to one or more fol-

lowers and after a short time, one of the leaders “wins”, i.e. a follower is ascribed to

be in the leader’s group for long enough for it to chase away the other leaders (see

video 1 on the CD supplement and Figure 4.10).

We found that the formingof groupswithin theherd causes cohesiveness todrop

compared to a casewithout groups. We also found, that in accordancewith butwith

a greater precision than the previous study, the group size distribution of the horses

living in the Hortobágy National Park is lognormal. In contrast to this, the current

model, based solely on spatial interactions, gives a normal distribution, which im-

plies that spatial interactions alone are not enough to produce the observed group

structure.

4.3.1 Cohesiveness of the herd

Starting fromuniform random initial positions and velocities of the individuals, after

sufficient time, themodel developsorderedmotion throughout theherdwhile form-

ing groups and thus arriving at a structured and co-moving herd (see Figure 4.7 and

video 2 on the CD supplement). We assumed that during collective migration the

horses cannot stop, thus there are two phases of ordered movement: translational

movement, and collective rotation about the – otherwise slowly moving – center of

mass (see also Figure 4.9). Indeed, when it is not possible to stop (e.g. due to fear),

but is not feasible or desirable tomove the herd as a whole, herdingmammals have

been observed to rotate around a common point. To measure translational cohe-

siveness we use the following translational order parameter
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variable description default value approx. dimensions

relevant variables

A affinity of followers for leaders 1.3 1.3

τA characteristic time of affinity 500 218 s

F AT
FL strength of F-L attraction 0.03 0.0125m/s

RAT
LL radius of L-L attraction 200 36m

REX
LL radius of L-L repulsion 15 2.7m

R*EX
LL , 5REX

LL – 75 13.6m

F AT
LL , F

AT
LF strength of L-L and L-F attraction 0.01 0.0042m/s

NL number of leaders 25 25

NF number of followers 175 175

irrelevant variables

F AT
FF strength of F-F attraction 0.0002 0.000083m/s

F EX
LL strength of L-L repulsion 2 0.83m/s

v0L velocity of leaders 1 0.416m/s

v0F velocity of followers 0.9 0.375m/s

τL L velocity relaxation time 3 1.31 s

τF F velocity relaxation time 1 0.44 s

ξ strength of the noise 0.5 0.21m/s

LLL, LLF, LFL, LFF non-interaction distances 1 0.18m

RAT
LF , R

AT
FL , R

AT
FF radii of attraction 50 9.1m

REX
LF , R

EX
FL , R

EX
FF radii of repulsion 5 0.9m

F EX
LF , F

EX
FL , F

EX
FF strength of repulsion 5 2.08m/s

Rcom radius of the cohesion force 250 45.5m

Fcom strength of the cohesion force 2.5 1m/s

β cohesion force parameter 0.01 0.01

Fwall strength of boundary repulsion 3 1.25m/s

Rwall distance of boundary repulsion 200 36.4m

D linear size of bounding box 10000 1800m

Table 4.1: Table of the parameters of the model grouped according to relevancy in

group formation. L and F abbreviate leader and follower respectively. The approxi-

mate proper dimensions are based on a comparison with observed horses, see Sec-

tion 4.3.3 for details.
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t = 100 t = 30000

Figure 4.7: Starting from a uniform random distribution of positions and velocities

(left side) the herd forms groups and exhibits ordered motion (right side). Blue dots

represent leaders and red dots represent followers (see Supplementary video 2 for

a video example).

Φt =
1

N

∣∣∣∣∣
N∑
i=1

vi

|vi|

∣∣∣∣∣ , (4.26)

and to measure the rotational cohesiveness we introduce the following rota-

tional order parameter

Φc =
1

N

N∑
i=1

P
(

vi

|vi|

)
, (4.27)

whereP denotes projection onto the normal of the line going through ri and r̄.

Going from a totally disordered translationalmovement to totally ordered trans-

lational movement Φt will grow from 0 to 1, while Φc will move from -1 to 1, as the

systemmoves froma totally ordered rotation around the center ofmass in onedirec-

tion, through no collective rotation to totally ordered rotation in the other direction.

We found that the system, with parameters given in Table 4.1 switches between

two modes, one of ordered rotation and one of ordered translational motion (see

Figure 4.8 and video 3 on the CD supplement for an example of a transition from

rotational to translational motion). Since the horses in the model do not have the

capacity to stop, in an event of indecision about the direction to move they must

rotate about a common axis, namely the center of mass. By averaging over the full

length of 1000 runs in total, we found that the rotations have no specific direction,

as expected (Mann-Whitney U-test, p = 0.96 on left-right similarity).
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Figure 4.8: The herd as a whole either exhibits an ordered translational motion or

rotates around a slowly drifting center ofmass. These twodifferent types ofmotions

canbedistinguisheddue to the valuesof the translational (a) and rotational (b) order

parameters. The plots are from the same specific run of the model, with the curves

smoothed by a window of∆t = 1000. The spikes during the translational phase are
caused by the confining wall (see video 4 on the CD supplement for a sample of an

interaction with the wall).

rotation translation

Figure 4.9: A rotational and a translational phase of two specific instances of the sim-

ulations with the boundary of the force Fcom (see Equation 4.24) shown in green.

Large blue dots represent leaders and small red dots represent followers. During

translationmovement themain functionofFcom is tokeepstragglerswithin theherd,

while during rotation we see that while one part of the herd would go one way, the

other part another, and the force keeps them together while the two groups other-

wise do not interact toomuch.
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Figure 4.10: More than one leader without a follower may be drawn to followers. In

this case one of them will ultimately succeed in gaining the follower in its ”harem”,

while the losers are ”fought” off to a distance. See the green bordered group with

three leaders (large blue dots) crowding around some followers (small red dots),

where one of them is driven off rather fast. Eventually, one of the remaining twowill

win. Time progresses from the left side of the image to the right side, in a specific

instance of the simulations.

Calculating the pair-correlation function

ρ(r) = 〈δ(r − ri)〉, (4.28)

for the leaders in the normal scenario (i.e. where followers are present) and in the

scenario where followers are missing, we find that the main structure of the herd

is given by the leaders, and introducing followers only slightly loosens this (aside

from the fact that it increases the distances between the leaders, see Figure 4.11).

We also investigated the effect of introducing followers among the leaders on the

order parameter of the translational movement. Comparing Φt (calculated using

only the velocities of the leaders in two cases, one where there are only leaders and

one where there are also followers) we find that order is decreased when allowing

for followers and forming of groups (see Table 4.2). This loss in the efficiency of the

movement of the herd as a whole points to benefits gained from social groupings

outside the paradigm of simple locomotion.

4.3.2 Group size distribution

Starting fromauniform randomspatial distribution and group-less state, themodel,

after sufficient time, will produce co-moving groups based on the relative positions

of leaders and followers. The emerging group size distribution is normal, although



CHAPTER 4. STUDY 2: COLLECTIVE MOTION OF HIERARCHICAL HERDS 76

0 200 400 600 800
0

0.2

0.4

𝑟

𝜌(
𝑟)

leaders & followers
only leaders

Figure 4.11: The pair-correlation for a herd composed of leaders and followers, but

only calculated on the leaders (solid line), and in the case where only leaders are

present (striped line). In the latter case the distances are scaled with R∗EX
LL /REX

LL ,

to compensate for the effect of no leader having a group (leaders without followers

canbecloser to eachother thanoneswith followers). Themain structureof theherd,

even with followers, is set by the leaders, but the presence of followers slackens the

rigidity of this structure.

〈Φt〉 〈Φt〉 (only leaders) 〈Φc〉 〈Φc〉 (only leaders)

w/o followers 0.866± 0.016 – −0.002± 0.011 –

with followers 0.608± 0.018 0.633± 0.017 0.025± 0.020 0.026± 0.021

Table 4.2: The translational and rotational order parameters averaged over 120 sim-

ulationswith standard errors. The duration of the runsweremany times longer than

the stabilization of groups. The first row is from simulationswhere only leaderswere

present, the second row is the full model with followers. In this case the averages

were calculated on the whole herd as well as on the leaders only. Adding followers

and thusmoving in groups decreases the order of translationalmovement, implying

that group formation has benefits other than increased herd cohesion. Although the

herd would rotate often, as expected, there is no specific direction of the rotation

(Mann-Whitney U-test on 1000 runs, where the simulationswas terminated at a time

not long after stabilization of groups yields a p = 0.96 on left-rigth similarity).

some leadersand followersmaynotbelong toagroup. Wedefinegroupsby thehigh-

est (non-zero)Dij values of the followers, i.e a group consists of the leader and the

followers with their highestDij rating corresponding to this leader. This effectively

means that groups are formed by followers spending the most time with a specific
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leader. The group size distribution rapidly reaches a close-to-final state and after

some time relaxes to the final state (seeFigure 4.12). We show the transitionby creat-

ing a histogramof the group sizes at regular intervals during a simulation and taking

the sumof the differences of each respective bin of the histogram in two consecutive

measurements, averaged over 1000 independent simulations .
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⋅104𝑡

Δ

Figure 4.12: The group size distribution quickly stabilizes as it is shown by the plot

of ∆. To calculate ∆ we create a histogram of the group sizes at regular intervals

during a simulation and take the sum of the differences of each respective bin of

the histogram in two consecutive measurements. Each point is averaged over 1000

independent simulations.

OnFigure 4.13we showacomparisonof the simulateddistributionwith real data

obtained fromaPrzewalski horseherd (see [125] for details). Sinceharemsizes grad-

ually change over time among the horses, the real data has been improved by taking

into account historical haremsizedistributions, showingamore clear lognormal dis-

tribution than in the previous study of [125]. In this previous study a networkmodel

was formulated to account for the lognormal distribution of the group sizes, while

the current model, based on purely spatial interactions was not able to reproduce

this. This indicates that at this level of complexity, it is not possible to reduce social

interactions to spatial interactions.
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Figure 4.13: Comparison of the group size distribution in the model with an empiri-

cal one (the group size distribution of Przewalski horses living in the Hortobágy Na-

tional Park). The empirical distribution follows a clearer lognormal distribution than

in [125] due to the incorporation of historical data. The distribution obtained from

themodel is close to normal and is mean-fitted to the empirical distribution. We at-

tribute thedifference to the fact that the social interactionsofhorsesare toocomplex

to capture in purely spatial interactions.

4.3.3 Dimension scales

Horses usually travel by walking, which is roughly around 1.5 km/h based on our

aerial observations averaged over several minutes. In this model v0L is the corre-

sponding parameter of the walking speed. To compare our model’s length scale

with that of reality we have calculated the pair-correlation function of the of thewild

horses by using aerial pictures of the real herd and that of the herd in our model

and compared the first peaks. This roughly equates the arbitrary length unit of our

model to 0.18m in reality (c.f. REX
LF in Table 4.1). From this we can calculate that

the arbitrary time unit of our model is roughly equal to 0.44 s. This puts τL and τF at

about reaction time (0.5−1.5 s), τA to about 3 andahalfminutes, and the emergence

of a coherent collective motion, with stable harems to slightly less than 10 minutes.

Since τL and τF both characterize a fast cognitive process it is not unrealistic that

the characteristic times are on the scale of reaction times. Since in wild horses the

groupsdonot form from randomlydistributed individuals spontaneously, but rather

evolve in an already laid down social context, the time needed for group formation

is not readily comparable to that of the real herd. On the other hand, for a group
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of 200 unfamiliar individuals, where leaders are already appointed and everybody

is actually already moving, the 10 minutes seems like a reasonable time for group

formation (the authors’ personal experience with spontaneous group formation in

human groups of comparable sizes would allow for even longer times).

4.4 Discussion

As the only truly wild horse in the world, the Przewalski horses, nowmostly living in

relatively easily accessiblenature reserves, havedrawnconsiderable attention. Both

their collective movements [134] and the formation of their harems have attracted

interest [125]. However, the unique collective motion displayed by this species, as a

large herd consisting of cohesive haremsmoving together in a coordinated way, has

not beenmodelled to date.

Our model, adapted from a model designed for cells, is able to qualitatively re-

produce the motion of a wild horse herd moving on an open plain, along with for-

mation of groups consisting of one leader and some followers and bachelor groups

(group of leaders without followers), with a roughly adequate correspondence of di-

mension scales. During the analysis of the behaviour of the model we found three

interesting phenomena, which wewill address first, and then turn to some other as-

pects of the study.

First, the herd in our model will at times rotate around its center of mass. While

we have not specifically observed the horses to circle, many animals do. That rota-

tion occurs in our model is the direct effect of the fact, that within our framework

the individuals are unable to stop. Indeed, animals that do rotate around a common

axis are usually also unable to stop (e.g. flying animals) or is infeasible or danger-

ous for them to stop (or at least that is their observation on the matter). We are not

aware of any scientific publication of observation of land mammals going around

in circles, but we know of two videos on the internet showing the phenomena. The

first example shows reindeer going in circles (https://www.youtube.com/watch?

v=YJu_aUHeVL4, or see circling example 1 on the CD supplement). Note that al-

though there is a fence, which obviously plays a role in the formation of the rotat-

ing movement the animals do not run along the fence, rather they rotate about a

common point in an area much smaller than is available to then. The second ex-

ample shows sheep doingmuch the same, although without any apparent confines

(https://www.youtube.com/watch?v=-PxbBWCQaic or see circling example 2 on

https://www.youtube.com/watch?v=YJu_aUHeVL4
https://www.youtube.com/watch?v=YJu_aUHeVL4
https://www.youtube.com/watch?v=-PxbBWCQaic
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the CD supplement). On the other hand, since we have not observed horses doing

this naturally, one could interpret rotation as an inability to decide which way to go,

for which themore natural responsewould be to stop or slow down, until a decision

is reached. Although some efforts have already been made to model the stopping

of a group of animals [106], [131], we suggest further investigations into a model,

that would allow for not only the stopping of, but also for the resuming of locomo-

tion, along with possible data collection on the topic. A rather simple extension of

our current model to allow stopping would be to take the circling as indication of

motivation to stop and adding a factor that slows down the particles proportionally

to their angular velocity, although if this achieves a natural looking stopping and

restarting remains to be tested. Another appealing method to try would be to in-

clude a ”tiredness” parameter as in [106] which would deplete on movement and

replenish on standing still.

Second, the translational order parameter is decreased when we introduce fol-

lowers among the leaders, thus the considered grouping process within the herd

effectively reduces locomotion efficiency. In many systems the interactions during

motion that give rise to collectivemotion is for the sake ofmore efficient locomotion

of the group as a whole, but the harem formation within a herd is first and foremost

due to reproductive reasons, which falls outside the realm of a collective motion

study. It is not surprising that the reproductive benefits might outweigh the slight

decrease in locomotive efficiency, while foraging or just changing locations. On the

other hand this decreased locomotive efficiencymayhave a larger impact during the

presence of predators. It would be interesting tomodel, how the presence of groups

modify response to predation, andwhether it has severe impact on the survivability

of the individuals.

Third, the results obtained from our model are not in agreement with the ob-

served group size distribution of the herd thatmotivated ourwork (the latter being a

lognormalwhile the formerbeinganormaldistribution). Our simplemodel operates

solelywith interactionsbasedonspatial distances,while group-formingprocesses in

real societies havemany complex attributes, thus deviations from the exact features

of the empirical population is expected. On the other hand, the collective motion in

many species can be described by purely distance-based interactions, making the

exact nature of these deviations non-trivial. Consequently, we propose further in-

vestigations of collectively moving systems to find the properties that allow for the

spatial formulation of interactions within the system. It can be supposed that in sys-
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temswhere individuals are interchangeable (in themeaning that individual recogni-

tionduring themotion is not feasible), like a groupof cells, ants or a flockof starlings,

considering only distance-based interactions is enough to reproduce the observed

collective motion pattern, but in animals living in structured social systems (and

maintaining an individual recognition), like horses, social factors aremuchmore im-

portant during interactions than actual distances, thus interchangeability might be

one such property.

There are several question that could be raised about the choices wemade dur-

ing model formation. One issue we have alreadymentioned is the question of map-

ping the individuals of a Przewalski herd to leaders and followers. Reality is quite

complex compared to ourmodel. Within the harem females, there is a hierarchy and

the male actually quite often follows behind the group, while the young offspring

probably further complicate the picture. Answering the question of who leads how

in a Prezwalski herd would require that we obtain detailed and continuous data on

the movement of large groups of Przewalski horses. Unfortunately this is not easy

task, since we do not know of any herd, where attaching measurement devices to

the animals is allowed by officials, thus one would have to use aerial observation. A

substitute for real wild horses could be domestic and feral horses. The problemwith

the former is that even if a single institution hasmany horses, due to breeding issues

and the safety of the stock (competingmales will be aggressive with each other, and

allowing them to freely copulate also risks injury) they lead a quite artificial lifestyle.

Interestingly, both domestic and feral horses have been studied [135], [136] in terms

of leadership, but the studies concentrate on movement initiation and not the col-

lective motion itself, showing a somewhat different point-of-view in physicists and

biologists. At the Department of Ethology we are currently working on a device for

horses, thatwouldnotonlyprovide long termrecordingof thepositionsof individual

horses, but would also provide detailed information on the behaviour of the animal

for the given point in time. Once ready we hope to be able to transfer it to enough

animals to be able to obtain detailed enough data to answer questions about lead-

ership in horses.

Another point of discussion is the necessity and form of Equation 4.24, which

keeps the herd together. The rationale behind the form of the force is the following.

A particle alone performs a sort of randomwalk. If we have twoparticles interacting,

which for some reason become detached, i.e. the interaction between them ceases

for a time, they become two independently randomwalking particles, meaning that
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the chances of them coming into interaction again diminishes very fast, which obvi-

ously destroys any semblance of flocking. There are several ways to overcome this.

One could add an interaction, which only goes to zero at infinity, like gravity, but that

would be wholly unrealistic for animal interactions. One could enclose the particles

in a boundary similar to what we used in our model, but small enough to force the

particles into constant interaction, but thiswould severely limit thepossibility of any

collective translationalmovement. Thus the solution chosenby us comes very natu-

rally, that the force responsible for theherdnot loosinganymembersduring flocking

only turns on sufficiently far from the center of mass of the herd so as not to inter-

fere directly with flocking. On the other hand there is also another possibility, which

is quite unrealistic for the flocking of animals where the density and the number of

individuals is both low, but is widely used for bacteria andmore theoretical oriented

models: using periodic boundary conditions. This essentially bounds the particles

in a sufficiently small space to keep them in continuous interaction, but introduces

the possibility of a particles trailing after other particles to suddenly find themselves

in front of those they have been following. Obviously, this is not a good choice for

modelling animals where some are explicitly in front, but once the number of indi-

viduals reaches a level, where a randomly chosenunitwillmost likely be surrounded

by other units, it becomes a viable approach. Although this is definitely not the case

for the Przewalski’s, it would be interesting to forgo Equation 4.24 and change the

boundary conditions to periodic while increasing the number of particles to one or

twomagnitudes larger.

4.5 Summary

To keep their cohesiveness during locomotion, gregarious animals must make col-

lective decisions. Many species boast complex societies withmultiple levels of com-

munities. A common case is when two dominant levels exist, one corresponding to

leaders and the other consisting of followers. We studied, for the first time, the col-

lective motion of such two-level assemblies of self-propelled particles, using termi-

nology borrowed from wild horse herds, where the herd consists of smaller groups

called harems.

We presented an agent-based model adapted from one originally proposed to

describe the movement of cells resulting in a smoothly varying coherent motion.

We studied the emergence (self-organization) of sub-groups within a herd during lo-
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comotion by computer simulations and compared the resulting processes with our

prior observations of a Przewalski horse herd (Hortobágy, Hungary) which we used

from a published case study.

We found that themodel reproduces key features of a herd composed of harems

movingonopenground, including fights for followersbetween leaders andbachelor

groups (group of leaders without followers). One of our findings, however, did not

agree with the observations. While in our model the emerging group size distribu-

tion is normal, the group size distribution of the observed herd based on historical

datahavebeen found to follow lognormal distribution. Weargued that this indicates

that the formation (and the size) of the harems must involve a more complex social

topology than simple spatial-distance based interactions.



5
Conclusion

In the previous two chapters I presented two studies wherein we investigated two

systems. These systems are both complex, biologically relevant, and involve differ-

ent types of agents. However, both the particulars of the systems and the questions

asked were different. The first system was a sexual contact network of humans,

wherein a sexually transmitted virus, HIV spreads. We asked how different strains

of HIV would spread and compete in this network. The second system was a hier-

archical herd of wild horses moving on an open plain. In essence asked whether a

model of the collectivemovements of cells canbe adapted to adequately explain the

motion and group formation of the Przewalski horse. Following the goals set out in

Chapter 1 I presented the relevant background of both topics to show in practice the

methodology outlined in Chapter 2.

In Chapter 3 we built the networkmodel based on empirical data available from

Sub-Saharan Africa and observed that ourmodel of HIV spreading is commensurate

with the history ofHIV.We showed that the first strain to infect a populationwill have

considerable advantage over strains arriving later. Even if the later strain is stronger,
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it needsatminimumdecades toovercome the resident strain. This implies thatwith-

out active prevention, strains of HIV, stronger than the current strains causing the

epidemic, might start showing up in the not-too-distant future.

In the study presented in Chapter 4, we demonstrated that the modified cell-

movement model produces results commensurate with wild horses moving on an

open plain, but fails to capture all aspects of the horses’ group structure. Themodel

raised further questions about how it would be possible to include amechanism for

the stopping and restarting ofmovement in such amodel andwhat exactly the prop-

erties of agents and their interactions are that allow for such a spatially-basedmod-

elling approach to work or fail.

This chapter also dealt in some detail with the concept of leadership in animals

and in their collective motion models, specifically in horses. In short, the field lacks

sufficient data to satisfactorily address questions regarding leadership since the ob-

servation of domesticated horses provides neither the needed group numbers nor

the natural settings, while observation of wild horses is rather problematic due both

to natural and legal causes. Observation of feral horses (domesticated horses living

wild) may provide a solution to this issue.

In the future, I wish to continue with the research of collective motion and ad-

dress the issues raised here in future works, but shift to not only doing theoretical

work (modelling), but also data collection to underpin the models. I hope that the

efforts at my current employment to develop an automated behaviour analysis for

animals (currently dogs and horses) will pay off in this regard.
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Realistic modelling of complex systems of biological

agents: epidemiology of HIV on complex sexual

networks and collective motion of hierarchical herds

– Summary –

Bence Ferdinandy

The study of complex systems – systems comprised of many units, the interactions of which

give rise to unique global phenomena – has gained momentum with the rise of computational

power and significantly increasing data availability on a variety of systems. In the dissertation I

review themethods of modelling complex systems and discuss the relevant practical and episte-

mological issues. The focus is on agent-based modelling, since complex systems, in general, are

well suited for the method, and biological systems are evenmore so.

I present two studies, carried out with my co-authors, concerning the modelling of two sys-

tems. Both systems are complex, biologically relevant, and involve different types of agents.

However, both theparticulars of the systemsand thequestions askedweredifferent. The first sys-

tem was a sexual contact network of humans, wherein a sexually transmitted virus, HIV spreads.

We asked howdifferent strains of HIVwould spread and compete in this network. The second sys-

temwas a hierarchical herd of wild horsesmoving on an open plain. In essence, asked whether a

model of the collectivemovements of cells can be adapted to adequately explain themotion and

group formation of the Przewalski wild horse.

In the first study we built the network model based on empirical data available from Sub-

Saharan Africa and observed that our model of HIV spreading is commensurate with the history

ofHIV.We showed that the first strain to infect apopulationwill have considerable advantageover

strains arriving later. Even if the later strain is stronger, it needs atminimumdecades to overcome

the resident strain. This implies that without active prevention, strains of HIV stronger than the

current strains causing the epidemic, might start showing up in the not-too-distant future.

In the second study, we demonstrated that the modified cell-movement model produces re-

sults commensurate with wild horses moving on an open plain, but fails to capture all aspects of

the horses’ group structure. The model raised further questions about how it would be possible

to include a mechanism for the stopping and restarting of movement in such a model and what

exactly the properties of agents and their interactions are that allow for such a spatially-based

modelling approach to work or fail.

Both studies address relevant questions in their respective fields, while showcasing the di-

verse applicability of agent-basedmodelling of complex systems.



Biológiai ágensek komplex rendszerének realisztikus

modellezése: a HIV epidemiológiája komplex szexuális

hálózatokon és hierarchikus csordák kollektív mozgása

– Összefoglaló –

Ferdinandy Bence

A komplex rendszerek – olyan, sok egységből álló rendszerek, amelyekben az egységek köl-

csönhatásai nyomán új, globális jelenségek keletkeznek – tanulmányozása a folyamatosan nö-

vekvő számítási kapacitásnak és a különböző rendszerekről jelentősenmegnőtt adatmennyiség-

nek köszönhetően virágkorát éli. A disszertációban összefoglalom a komplex rendszerek model-

lezési módszereit, érintve a releváns gyakorlati és episztemológiai kérdéseket. A fókuszban az

ágens-alapú modellezés van, tekintettel arra, hogy általában a komplex rendszerek, de különö-

sen a biológiai rendszerek modellezésére rendkívül alkalmas.

Két rendszer modellezéséről szóló tanulmányt mutatok be, amelyeket szerzőtársaimmal ké-

szítettünk. Mindkét rendszer komplex, biológiai ihletésű és több típusú ágensből áll, azonban a

rendszerek részleteikben, valamint a róluk feltett kérdésekben eltérnek egymástól. Az első rend-

szer emberek szexuális kapcsolatainak hálózata, amelyen a szexuális úton terjedő HIV fertőz. Ar-

ra kerestük a választ, hogy a HIV különböző törzsei miképpen terjednek és versengenek ezen a

hálózaton. A második rendszer egy nyílt terepen mozgó hierarchikus vadló csorda, amely ese-

tében a kérdésünk lényegében az volt, hogy egy, a sejtek kollektív mozgására kitalált modell

módosítható-e úgy, hogy elfogadható módon magyarázza a Przewalski vadlovak mozgását és

csoportjaiknak kialakulását.

Az első tanulmányban a hálózati modellt szubszaharai Afrikából származó empirikus adatok

alapján építettük, és azt találtuk, hogy aHIV terjedésimodellünk aHIV történelmével összevethe-

tő eredményeketprodukál. Megmutattuk, hogyapopulációt fertőzőelsőHIV törzs jelentős előnyt

szerez a később érkező törzsekkel szemben. A később érkező törzsnek még akkor is legalább év-

tizedekre van szüksége arra, hogy felülkerekedjen a korábbi törzsön, ha lényegesen fertőzőképe-

sebb. Ez arra utal, hogy aktív prevenció nélkül amostani járványt okozó törzsnél fertőzőképesebb

törzsek jelenhetnek meg a nem túl távoli jövőben.

Amásodik tanulmányban bemutattuk, hogy amódosított sejtmozgás-modell képes a nyílt te-

repen közlekedő vadlovakéval összevethető mozgást produkálni, de nem tudja megragadni a lo-

vak csoportstruktúrájánakmindenelemét. Amodellünk további kérdéseket vet fel: hogyan lehet-

ne egy olyan mechanizmust beépíteni, amitől a csorda időnként megáll, majd elindul, valamint,

hogy melyek az ágensek és interakcióik azon tulajdonságai, amelyek alkalmassá vagy alkalmat-

lanná tesznek egy hasonló, távolság alapúmodellt a rendszer leírására.

Mindkét tanulmány a saját területén releváns kérdésekkel foglalkozik, miközben szemlélteti,

hogy a komplex rendszerek ágens-alapúmodellezése széles körben alkalmazható módszer.
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